Activation of Bombyx mori neuropeptide G protein-coupled receptor A19 by neuropeptide RYamides couples to G
Bombyx mori
ERK1/2
GPCR
RYamide
neuropeptide
signaling
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
16
02
2020
revised:
02
11
2020
accepted:
09
11
2020
pubmed:
6
1
2021
medline:
13
8
2021
entrez:
5
1
2021
Statut:
ppublish
Résumé
RYamides constitute a novel family of neuropeptides newly identified in insects, and play important roles in regulating a variety of physiological processes. However, the signaling characteristics and physiological actions of RYamide signaling system remain largely unknown. In the present study, we cloned the full-length complementary DNA of the RYamide receptor BNGR-A19 from Bombyx mori larvae. After expression in mammalian HEK293T and insect Sf9 cells, functional assays revealed that BNGR-A19 was activated by synthetic RYamide peptides, triggering a significant increase in cAMP-response element controlled luciferase activity and Ca
Substances chimiques
Insect Proteins
0
Neuropeptides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
456-471Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Masler EP, Kelly TJ, Menn JJ. Insect neuropeptides - discovery and application in insect management. Arch Insect Biochem Physiol. 1993;22:87-111.
Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res. 2010;9:5296-5310.
Ida T, Takahashi T, Tominaga H, et al. Identification of the novel bioactive peptides dRYamide-1 and dRYamide-2, ligands for a neuropeptide Y-like receptor in Drosophila. Biochem Biophys Res Commun. 2011;410:872-877.
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol. 2014;5:454.
Li LJ, Kelley WP, Billimoria CP, et al. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem. 2003;87:642-656.
Ohno H, Yoshida M, Sato T, et al. Luqin-like RYamide peptides regulate food-evoked responses in C. elegans. eLife. 2017;6:6.
Kanost MR, Arrese EL, Cao X, et al. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem Mol Biol. 2016;76:118-147.
Lavore A, Perez-Gianmarco L, Esponda-Behrens N, et al. Nezara viridula (Hemiptera: Pentatomidae) transcriptomic analysis and neuropeptidomics. Sci Rep. 2018;8:8.
Veenstra JA. Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ. 2019;7:7.
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne). 2013;4:193.
Nassel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides. 2011;32:1335-1355.
Jekely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A. 2013;110:8702-8707.
Mirabeau O, Joly JS. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A. 2013;110:E2028-E2037.
Yanez-Guerra LA, Delroisse J, Barreiro-Iglesias A, Slade SE, Scrivens JH, Elphick MR. Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome. Sci Rep. 2018;8:8
A novel cardio-excitatory peptide isolated from the atria of the African giant snail, Achatina fulica. Biochem Biophys Res Commun. 1990;167(2):777-783. https://www.ncbi.nlm.nih.gov/pubmed/2322251
Shyamala M, Fisher JM, Scheller RH. A neuropeptide precursor expressed in aplysia neuron L5. DNA. 1986;5(3):203-208. http://doi.org/10.1089/dna.1986.5.203
Chen RB, Xiao MM, Buchberger A, Li LJ. Quantitative neuropeptidomics study of the effects of temperature change in the crab Cancer borealis. J Proteome Res. 2014;13:5767-5776.
Matsumoto S, Kutsuna N, Daubnerova I, et al. Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori. PLoS One. 2019;14:e0219050.
Mekata T, Kono T, Satoh J, et al. Purification and characterization of bioactive peptides RYamide and CCHamide in the kuruma shrimp Marsupenaeus japonicus. Gen Comp Endocrinol. 2017;246:321-330.
Proekt A, Vilim FS, Alexeeva V, et al. Identification of a new neuropeptide precursor reveals a novel source of extrinsic modulation in the feeding system of Aplysia. J Neurosci. 2005;25:9637-9648.
Veenstra JA, Khammassi H. Rudimentary expression of RYamide in Drosophila melanogaster relative to other Drosophila species points to a functional decline of this neuropeptide gene. Insect Biochem Mol Biol. 2017;83:68-79.
Collin C, Hauser F, Krogh-Meyer P, et al. Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides. Biochem Biophys Res Commun. 2011;412:578-83.
Roller L, Cizmar D, Bednar B, Zitnan D. Expression of RYamide in the nervous and endocrine system of Bombyx mori. Peptides. 2016;80:72-79.
Fan Y, Sun P, Wang Y, et al. The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2010;40:581-591.
Yamanaka N, Yamamoto S, Zitnan D, et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One. 2008;3: e3048.
Yang H, He X, Yang J, et al. Activation of cAMP-response element-binding protein is positively regulated by PKA and calcium-sensitive calcineurin and negatively by PKC in insect. Insect Biochem Mol Biol. 2013;43:1028-1036.
Shen Z, Chen Y, Hong L, et al. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem. 2017;292:16554-16570.
Li G, Shi Y, Huang H, et al. Internalization of the human nicotinic acid receptor GPR109A is regulated by G(i), GRK2, and arrestin3. J Biol Chem. 2010;285:22605-18.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-408.
Eishingdrelo H, Kongsamut S. Minireview: targeting GPCR activated ERK pathways for drug discovery. Curr Chem Genom Transl Med. 2013;7:9-15.
Kumari P, Srivastava A, Banerjee R, et al. Functional competence of a partially engaged GPCR-beta-arrestin complex. Nat Commun. 2016:7.
Luttrell LM. 'Location, location, location': activation and targeting of MAP kinases by G protein-coupled receptors. J Mol Endocrinol. 2003;30:117-126.
Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J. 2003;375:503-515.
Christie AE. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea). Gen Comp Endocrinol. 2014;206:96-110.
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol. 2010;167:86-103.
Yanez-Guerra LA, Elphick MR. Evolution and comparative physiology of luqin-type neuropeptide signaling. Front Neurosci. 2020;14:14.
Goldsmith MR, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol. 2005;50:71-100.
Palczewski K. G protein-coupled receptor rhodopsin. Annu Rev Biochem. 2006;75:743-767.
Moore CAC, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol. 2007;69:451-482.
Bauknecht Philipp, Jékely Gáspár. Large-scale combinatorial deorphanization of platynereis neuropeptide GPCRs. Cell Reports. 2015;12(4):684-693. http://doi.org/10.1016/j.celrep.2015.06.052
Lapadula D, Farias E, Randolph CE, et al. Effects of oncogenic G alpha q and G alpha(11) inhibition by FR900359 in uveal melanoma. Mol Cancer Res. 2019;17:963-973.
Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007;213:589-602.
Litosch I. Regulating G protein activity by lipase-independent functions of phospholipase C. Life Sci. 2015;137:116-124.
Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade. Insect Biochem Mol Biol. 2016;75:78-88.
Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F. Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genomics. 2010;4:84-91.
Flower NE, Walker GD. Rectal papillae in musca-domestica - cuticle and lateral membranes. J Cell Sci. 1979;39:167-186.
D. A. McKinney MRB 2012. Expression and functional role for the RYamide-2 neuropeptide in the yellow fever mosquito, Aedes aegypti. Entomological Society of America Annual Meeting. Knoxville, TN.