Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance.
evolution
genetics
immunodeficiency
method
selection
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
19 01 2021
19 01 2021
Historique:
entrez:
7
1
2021
pubmed:
8
1
2021
medline:
18
5
2021
Statut:
ppublish
Résumé
Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.
Identifiants
pubmed: 33408250
pii: 2001248118
doi: 10.1073/pnas.2001248118
pmc: PMC7826345
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : P01 AI061093
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001866
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):135-40
pubmed: 16371466
PLoS Genet. 2010 Oct 14;6(10):e1001154
pubmed: 20976243
Nat Genet. 2016 Apr;48(4):349-55
pubmed: 26878723
PLoS Genet. 2013;9(8):e1003709
pubmed: 23990802
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
J Allergy Clin Immunol. 2017 Oct;140(4):1191-1194.e4
pubmed: 28532655
Gene. 2003 Oct 30;318:169-75
pubmed: 14585509
BMC Bioinformatics. 2019 Feb 6;20(1):65
pubmed: 30727941
Clin Cancer Res. 2018 Apr 1;24(7):1716-1726
pubmed: 29330206
Nat Genet. 2017 May;49(5):806-810
pubmed: 28369035
J Clin Invest. 2013 Nov;123(11):4781-5
pubmed: 24216514
Genome Res. 2009 May;19(5):838-49
pubmed: 19279335
J Clin Immunol. 2020 Jan;40(1):24-64
pubmed: 31953710
Science. 2014 Sep 26;345(6204):1560-1
pubmed: 25258064
Nucleic Acids Res. 2019 Jul 2;47(W1):W142-W150
pubmed: 31114925
Nat Genet. 2019 May;51(5):772-776
pubmed: 30962618
J Immunol. 2015 Apr 1;194(7):3305-16
pubmed: 25712219
Sci Immunol. 2020 Jul 10;5(49):
pubmed: 32651211
PLoS Comput Biol. 2010 Dec 02;6(12):e1001025
pubmed: 21152010
Semin Immunol. 2018 Apr;36:1-12
pubmed: 29254755
Biol Rev Camb Philos Soc. 2019 Oct;94(5):1774-1785
pubmed: 31149781
Curr Biol. 2008 Jun 24;18(12):883-9
pubmed: 18571414
Nat Rev Genet. 2018 Jan;19(1):51-62
pubmed: 29082913
Nat Commun. 2018 Jul 16;9(1):2750
pubmed: 30013096
Mol Biol Evol. 1985 Mar;2(2):150-74
pubmed: 3916709
Am J Hum Genet. 2017 Oct 5;101(4):623-629
pubmed: 28985496
Genetics. 2011 Feb;187(2):553-66
pubmed: 21098719
PLoS Comput Biol. 2012;8(12):e1002806
pubmed: 23236270
Bioinformatics. 2017 Feb 15;33(4):471-474
pubmed: 27563026
Nature. 2005 Oct 20;437(7062):1153-7
pubmed: 16237444
Orphanet J Rare Dis. 2014 Nov 26;9:171
pubmed: 25425184
Nature. 2016 Aug 17;536(7616):285-91
pubmed: 27535533
Nucleic Acids Res. 2015 Mar 11;43(5):e33
pubmed: 25550428
J Exp Med. 2019 Sep 2;216(9):2038-2056
pubmed: 31217193
Genetics. 2005 Sep;171(1):385-92
pubmed: 15972465
PLoS One. 2018 Dec 10;13(12):e0208626
pubmed: 30532199
Am J Hum Genet. 2016 Jan 7;98(1):5-21
pubmed: 26748513
Genetics. 1981 Mar-Apr;97(3-4):639-66
pubmed: 7297851
J Clin Invest. 2009 Jun;119(6):1502-14
pubmed: 19436109
Hum Genet. 2017 Jun;136(6):665-677
pubmed: 28349240
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894
pubmed: 30371827
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12966-71
pubmed: 14566051
Curr Opin Immunol. 2015 Feb;32:90-105
pubmed: 25645939
Nature. 1977 May 19;267(5608):275-6
pubmed: 865622
Am J Hum Genet. 2016 Jan 7;98(1):149-64
pubmed: 26748517
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15398-403
pubmed: 15492219
Science. 2007 Aug 3;317(5838):617-9
pubmed: 17673650
J Clin Immunol. 2018 Jan;38(1):96-128
pubmed: 29226302
Immunity. 2010 Sep 24;33(3):400-11
pubmed: 20832341
Nucleic Acids Res. 2004 Mar 12;32(5):1731-7
pubmed: 15020709
Genome Biol. 2016 Jan 18;17:9
pubmed: 26781712
Science. 2007 Sep 14;317(5844):1522-7
pubmed: 17872438
Genome Biol. 2004;5(7):R47
pubmed: 15239832
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13615-20
pubmed: 26483451