Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea.


Journal

Journal of applied physiology (Bethesda, Md. : 1985)
ISSN: 1522-1601
Titre abrégé: J Appl Physiol (1985)
Pays: United States
ID NLM: 8502536

Informations de publication

Date de publication:
01 03 2021
Historique:
pubmed: 8 1 2021
medline: 30 6 2021
entrez: 7 1 2021
Statut: ppublish

Résumé

Reductions in respiratory-related synaptic inputs to inspiratory motor neurons initiate a form of plasticity that proportionally enhances inspiratory motor output, even in the absence of changing blood gases. This form of plasticity is known as inactivity-induced inspiratory motor facilitation (iMF). iMF triggered by brief, recurrent reductions in respiratory neural activity requires local retinoic acid (RA) synthesis, but receptor subtypes activated by RA are unknown. To test the hypothesis that retinoic acid receptor alpha (RARα) is necessary for iMF, RAR subtype-specific inhibitors were delivered intrathecally above the phrenic motor pool in urethane-anesthetized, ventilated rats before 5, ∼1 min central apneas (without hypoxia; separated by 5 min) while monitoring phrenic inspiratory output. Pretreatment with a spinal RARα inhibitor impaired the capacity for recurrent central apnea to trigger long-lasting increases in phrenic inspiratory output, but plasticity was expressed in rats pretreated with an RARβ/γ inhibitor. Intrathecal RA application in the absence of reduced respiratory neural activity elicited an increase in phrenic inspiratory output, which was prevented by pretreatment with an RARα inhibitor. These data indicate that spinal RARα activation is necessary for iMF triggered by recurrent reductions in respiratory neural activity, and that RARα activation in/near the phrenic motor pool in the absence of respiratory neural activity deprivation is sufficient to elicit phrenic inspiratory motor facilitation. Understanding cellular cascades underlying plasticity induced by reductions in respiratory neural activity may define avenues for pharmacological intervention in disorders in which endogenous compensatory mechanisms that defend ongoing inspiratory motor output are impaired.

Identifiants

pubmed: 33411644
doi: 10.1152/japplphysiol.00287.2020
pmc: PMC7988792
doi:

Substances chimiques

Retinoic Acid Receptor alpha 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

836-845

Subventions

Organisme : NHLBI NIH HHS
ID : F30 HL126351
Pays : United States
Organisme : NIH HHS
ID : T32GM008692
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008692
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105511
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL142752
Pays : United States
Organisme : NIH HHS
ID : F30HL126351
Pays : United States
Organisme : NIH HHS
ID : HL105511
Pays : United States

Références

Methods Enzymol. 2020;637:119-150
pubmed: 32359643
Cold Spring Harb Perspect Biol. 2012 Jan 01;4(1):a005736
pubmed: 22086977
J Sleep Res. 2009 Mar;18(1):20-5
pubmed: 19250172
FASEB J. 2008 Jan;22(1):236-45
pubmed: 17712061
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16015-20
pubmed: 18840692
Neuropharmacology. 2014 Mar;78:3-12
pubmed: 23270606
J Physiol. 2019 Aug;597(15):3951-3967
pubmed: 31280489
Can J Physiol Pharmacol. 1998 Jul-Aug;76(7-8):707-14
pubmed: 10030450
J Neurosci. 2013 May 29;33(22):9235-45
pubmed: 23719793
Neuroscience. 1999;89(4):1291-300
pubmed: 10362315
Exp Neurol. 2017 Jan;287(Pt 2):235-242
pubmed: 27474512
Ann Anat. 2013 Mar;195(2):111-21
pubmed: 23017197
J Neurosci. 2012 Nov 14;32(46):16510-20
pubmed: 23152633
J Biol Chem. 2008 Jul 25;283(30):20841-7
pubmed: 18495661
Exp Neurol. 2014 Jun;256:46-56
pubmed: 24681155
J Appl Physiol (1985). 2013 May 15;114(10):1388-95
pubmed: 23493368
Annu Rev Neurosci. 2018 Jul 8;41:475-499
pubmed: 29709210
J Physiol. 2019 Aug;597(15):3789-3790
pubmed: 31271221
Neuroscience. 1994 Oct;62(3):899-918
pubmed: 7870312
Exp Neurol. 2017 Jan;287(Pt 2):225-234
pubmed: 27456270
Curr Pulmonol Rep. 2019 Mar;8(1):14-21
pubmed: 31788413
J Appl Physiol (1985). 2014 Oct 1;117(7):682-93
pubmed: 25103979
Respir Physiol Neurobiol. 2013 Nov 1;189(2):384-94
pubmed: 23816599
J Neurochem. 2007 Dec;103(5):1821-33
pubmed: 17956549
J Physiol. 2000 Nov 15;529 Pt 1:215-9
pubmed: 11080263
Learn Mem. 1998 Jul-Aug;5(3):246-56
pubmed: 10454368
J Clin Sleep Med. 2012 Oct 15;8(5):555-63
pubmed: 23066368
J Neurosci. 2009 Nov 18;29(46):14383-93
pubmed: 19923273
J Neurosci Methods. 2009 Sep 15;182(2):244-9
pubmed: 19559048
Neuron. 2013 Oct 30;80(3):718-28
pubmed: 24183022
Neuron. 2008 Oct 23;60(2):308-20
pubmed: 18957222
J Neurosci. 2011 Dec 7;31(49):17764-71
pubmed: 22159093
J Neurophysiol. 2017 Nov 1;118(5):2702-2710
pubmed: 28814632
Prog Neurobiol. 2005 Mar;75(4):275-93
pubmed: 15882777
Respir Physiol Neurobiol. 2011 Mar 15;175(3):303-9
pubmed: 21167322
Neuroscience. 2008 Sep 9;155(4):1030-47
pubmed: 18674601
Front Neurosci. 2016 Feb 04;10:4
pubmed: 26869872

Auteurs

Kendra M Braegelmann (KM)

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Armand Meza (A)

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Abiye E Agbeh (AE)

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Daryl P Fields (DP)

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Tracy L Baker (TL)

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH