Identification of a universal antigen epitope of influenza A virus using peptide microarray.


Journal

BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759

Informations de publication

Date de publication:
07 Jan 2021
Historique:
received: 08 08 2020
accepted: 15 12 2020
entrez: 8 1 2021
pubmed: 9 1 2021
medline: 2 7 2021
Statut: epublish

Résumé

Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14-4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration.

Sections du résumé

BACKGROUND BACKGROUND
Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein.
RESULTS RESULTS
Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14-4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN.
CONCLUSION CONCLUSIONS
The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration.

Identifiants

pubmed: 33413356
doi: 10.1186/s12917-020-02725-5
pii: 10.1186/s12917-020-02725-5
pmc: PMC7792037
doi:

Substances chimiques

Antigens, Viral 0
Epitopes 0
Hemagglutinin Glycoproteins, Influenza Virus 0
Immune Sera 0
Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22

Subventions

Organisme : Key Technologies Research and Development Program
ID : 2017YFD0500701
Organisme : Jiangsu Agricultural Science and Technology Independent Innovation Fund
ID : [CX (18)3018]
Organisme : National Natural Science Foundation of China
ID : 31872473
Organisme : National Natural Science Foundation of China
ID : 31872477
Organisme : National Natural Science Foundation of China
ID : 31602057
Organisme : Jiangsu Provincial Key Research and Development Program
ID : BE2018358
Organisme : Natural Science Foundation of Jiangsu Province
ID : (BK20160456

Références

Graaf MD, Fouchier RAM. Role of receptor binding specificity in influenza a virus transmission and pathogenesis. EMBO J. 2014;33(8):823–41.
pubmed: 24668228 pmcid: 4194109 doi: 10.1002/embj.201387442
Ma MJ, Wang GL, Anderson BD, Bi ZQ, Lu B, Wang XJ, Wang CX, Chen SH, Qian YH, Song SX, Li M. Evidence for cross-species influenza a virus transmission within swine farms, China: a one health, prospective cohort study. Clin Infect Dis. 2018;66(4):533–40.
pubmed: 29401271 doi: 10.1093/cid/cix823
Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14:480.
pubmed: 25186370 pmcid: 4169819 doi: 10.1186/1471-2334-14-480
Peng Y, Li X, Zhou H, Wu A, Dong L, Zhang Y, Gao R, Bo H, Yang L, Wang D, Lin X, Jin M, Shu Y, Jiang T. Continual antigenic diversification in China leads to global antigenic complexity of avian influenza H5N1 viruses. Sci Rep. 2017;7:43566.
pubmed: 28262734 pmcid: 5337931 doi: 10.1038/srep43566
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza a viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53–63.
pubmed: 24675275 doi: 10.1016/j.virusres.2014.03.015
Kumar A, Vn MA, Raut AA, Sood R, Mishra A. Identification of chicken pulmonary miRNAs targeting PB1, PB1-F2, and N40 genes of highly pathogenic avian influenza virus H5N1 in silico. Bioinform Biol Insights. 2014;8:135–45.
pubmed: 25002813 pmcid: 4069037 doi: 10.4137/BBI.S14631
Kamal RP, Alymova IV, York IA. Evolution and virulence of influenza A virus protein PB1-F2. Int J Mol Sci. 2017;19(1):96.
Nachbagauer R, Wohlbold TJ, Hirsh A, Hai R, Sjursen H, Palese P, Cox RJ, Krammer F. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol. 2014;88(22):13260–8.
pubmed: 25210189 pmcid: 4249097 doi: 10.1128/JVI.02133-14
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. New world bats harbor diverse influenza a viruses. PLoS Pathog. 2013;9(10):e1003657.
pubmed: 24130481 pmcid: 3794996 doi: 10.1371/journal.ppat.1003657
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza a viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res. 2018;7(1):1–15.
pubmed: 29399575 pmcid: 5795040 doi: 10.7774/cevr.2018.7.1.1
Fan X, Hashem AM, Chen Z, Li C, Doyle T, Zhang Y, Yi Y, Farnsworth A, Xu K, Li Z, He R, Li X, Wang J. Targeting the HA2 subunit of influenza a virus hemagglutinin via CD40L provides universal protection against diverse subtypes [J]. Mucosal Immunol. 2014;8(1):211.
pubmed: 25052763 pmcid: 4269809 doi: 10.1038/mi.2014.59
Lohia N, Baranwal M. Identification of conserved peptides comprising multiple T cell epitopes of matrix 1 protein in H1N1 influenza virus. Viral Immunol. 2015;28(10):570–9.
pubmed: 26398199 pmcid: 4677511 doi: 10.1089/vim.2015.0060
Ichihashi T, Yoshida R, Sugimoto C, Takada A, Kajino K. Cross-protective peptide vaccine against influenza a viruses developed in HLA-A*2402 human immunity model. PLoS One. 2011;6(9):e24626.
pubmed: 21949735 pmcid: 3176274 doi: 10.1371/journal.pone.0024626
Gangwar RS, Shil P, Cherian SS, Gore MM. Delineation of an epitope on domain I of Japanese encephalitis virus envelope glycoprotein using monoclonal antibodies. Virus Res. 2011;158(1–2):179–87.
pubmed: 21477626 doi: 10.1016/j.virusres.2011.03.030
He JL, Hsieh MS, Juang RH, Wang CH. A monoclonal antibody recognizes a highly conserved neutralizing epitope on hemagglutinin of H6N1 avian influenza virus. Vet Microbiol. 2014;174(3–4):333–41.
pubmed: 25465660 doi: 10.1016/j.vetmic.2014.10.008
Ekiert DC, Bhabha G, Elsliger MA, Friesen RHE, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA. Antibody recognition of a highly conserved influenza virus epitope. Science. 2009;324(5924):246–51.
pubmed: 19251591 pmcid: 19251591 doi: 10.1126/science.1171491
Li Z, Wan Z, Li T, Xie Q, Sun H, Chen H, Liang G, Shao H, Qin A, Ye J. A novel linear epitope crossing group 1 and group 2 influenza a viruses located in the helix a of HA2 derived from H7N9. Vet Microbiol. 2019;228:39–44.
pubmed: 30593378 doi: 10.1016/j.vetmic.2018.11.002 pmcid: 30593378
Zhu Y, Yang D, Ren Q, Yang Y, Liu X, Xu X, Liu W, Chen S, Peng D, Liu X. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet Microbiol. 2015;178(1–2):144–9.
pubmed: 25934533 doi: 10.1016/j.vetmic.2015.04.012
Khurana S, Sasono P, Fox A, Nguyen VK, Golding H. H5N1-serodetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance. J Virol. 2011;85(23):12455–63.
pubmed: 21957281 pmcid: 3209361 doi: 10.1128/JVI.06023-11
Neuvirth H, Raz R, Schreiber G. ProMate: a structure based prediction program to identify the location of protein–protein binding sites. J Mol Biol. 2004;338(1):181–99.
pubmed: 15050833 doi: 10.1016/j.jmb.2004.02.040
Babon JAB, Cruz J, Orphin L, Pazoles P, Co MDT, Ennis FA, Terajima M. Genome-wide screening of human T-cell epitopes in influenza a virus reveals a broad spectrum of CD4+ T-cell responses to internal proteins, hemagglutinins, and neuraminidases. Hum Immunol. 2009;70(9):711–21.
pubmed: 19524006 pmcid: 2767101 doi: 10.1016/j.humimm.2009.06.004
Richards KA, Chaves FA, Sant AJ. The memory phase of the CD4 T-cell response to influenza virus infection maintains its diverse antigen specificity. Immunology. 2011;133(2):246–56.
pubmed: 21517839 pmcid: 3088986 doi: 10.1111/j.1365-2567.2011.03435.x
Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ. Direct ex vivo analyses of HLA-DR1 transgenic mice reveal an exceptionally broad pattern of immunodominance in the primary HLA-DR1-restricted CD4 T-cell response to influenza virus hemagglutinin. J Virol. 2007;81(14):7608–19.
pubmed: 17507491 pmcid: 1933370 doi: 10.1128/JVI.02834-06
Zhao RM, Cui SJ, Guo L, Wu C, Gonzalez R, Paranhos-Baccala G, Vernet G, Wang JW, Hung T. Identification of a highly conserved H1 subtype-specific epitope with diagnostic potential in the hemagglutinin protein of influenza a virus. PLoS One. 2011;6(8):e23374.
pubmed: 21886787 pmcid: 3158760 doi: 10.1371/journal.pone.0023374
Butler D. The ghost of influenza past and the hunt for a universal vaccine. Nature. 2018;560(7717):158–60.
pubmed: 30089927 doi: 10.1038/d41586-018-05889-1
Coughlan L, Palese P. Overcoming barriers in the path to a universal influenza virus vaccine. Cell Host Microbe. 2018;24(1):18–24.
pubmed: 30001520 doi: 10.1016/j.chom.2018.06.016
Krammer F, García-Sastre A, Palese P. Is it possible to develop a "universal" influenza virus vaccine? Toward a universal influenza virus vaccine: potential target antigens and critical aspects for vaccine development. Cold Spring Harb Perspect Biol. 2017;10(7):a028845.
doi: 10.1101/cshperspect.a028845
Paules CI, Fauci AS. A universal flu vaccine is vital. Sci Am. 2018;318(2):8–8.
pubmed: 29337938 doi: 10.1038/scientificamerican0218-8
Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:123.
pubmed: 29467737 pmcid: 5808216 doi: 10.3389/fmicb.2018.00123
Ekiert DC, Friesen RHE, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJWM, Brandenburg B, Vogels R, Brakenhoff JPJ, Kompier R, Koldijk MH, Cornelissen LAHM, Poon LLM, Peiris M, Koudstaal W, Wilson IA, Goudsmit J. A highly conserved neutralizing epitope on group 2 influenza a viruses. Science. 2011;333(6044):843–50.
pubmed: 21737702 pmcid: 3210727 doi: 10.1126/science.1204839
Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC, Albrecht RA, García-Sastre A, Palese P. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza a viruses. J Virol. 2013;87(19):10435–46.
pubmed: 23903831 pmcid: 3807421 doi: 10.1128/JVI.01715-13
Krammer F, Palese P, Steel J. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr Top Microbiol Immunol. 2015;386:301–21.
pubmed: 25007847
Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JPM, Skehel JJ, Lanzavecchia A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza a hemagglutinins. Science. 2011;333(6044):850–6.
pubmed: 21798894 pmcid: 21798894 doi: 10.1126/science.1205669
Su M, Li T, Liu DJ, Wang ZX. A peptide microarray-based fluorescent and resonance light scattering assay for screening thrombin inhibitor. Chin J Anal Chem. 2015;43(2):199–205.
doi: 10.1016/S1872-2040(15)60802-7
Chen JX, Chen MX, Ai L, Chen JH, Chen SH, Zhang YN, Cai YC, Zhu XQ, Zhou XN. A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases. PLoS Negl Trop Dis. 2012;6(11):e1899.
pubmed: 23209851 pmcid: 3510079 doi: 10.1371/journal.pntd.0001899
Lu YD, Li Z, Teng H, Xu HK, Qi SN, He JA, Gu DY, Chen QJ, Ma HW. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases. Sci Rep. 2015;5:13364.
pubmed: 26293607 pmcid: 4543967 doi: 10.1038/srep13364
Sachse K, Rahman KS, Schnee C, Muller E, Peisker M, Schumacher T, Schubert E, Ruettger A, Kaltenboeck B, Ehricht R. A novel synthetic peptide microarray assay detects chlamydia species-specific antibodies in animal and human sera. Sci Rep. 2018;8:4701.
pubmed: 29549361 pmcid: 5856796 doi: 10.1038/s41598-018-23118-7
Braakman I, Helenius J, Helenius A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 1992;11(5):1717–22.
pubmed: 1582407 pmcid: 556629 doi: 10.1002/j.1460-2075.1992.tb05223.x
Xu S, Zhou J, Liu K, Liu Q, Xue C, Li X. Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza a H3N2 virus affect HA thermal stability and fusion activity. Virus Genes. 2013;47(1):20–6.
pubmed: 23749101 doi: 10.1007/s11262-013-0924-0
Holtz KM, Robinson PS, Matthews EE, Hashimoto Y, McPherson CE, Khramtsov N, Reifler MJ, Meghrous J, Rhodes DG, Cox MM. Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC Biotechnol. 2014;14(1):111.
pubmed: 25540031 doi: 10.1186/s12896-014-0111-y
Guo C, Zhang H, Xie X, Liu Y, Sun L, Li H, Yu P, Hu H, Sun J, Li Y, Feng Q, Zhao X, Liang D, Wang Z, Hu J. H1N1 influenza virus epitopes classified by monoclonal antibodies. Exp Ther Med. 2018;16(3):2001–7.
pubmed: 30186431 pmcid: 6122413
Wang Z, Huang B, Thomas M, Sreenivasan CC, Sheng Z, Yu J, Hause BM, Wang D, Francis DH, Kaushik RS, Li F. Detailed mapping of the linear B cell epitopes of the hemagglutinin (HA) protein of swine influenza virus. Virology. 2018;522:131–7.
pubmed: 30029012 doi: 10.1016/j.virol.2018.07.013
Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wang X, Zhu Y, Peng D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine. 2016;34(3):350–7.
pubmed: 26638027 doi: 10.1016/j.vaccine.2015.11.045
Zhao X, Zhou Z, Chen Y, Chen W, Ma H, Pu J. Role of antibodies to human papillomavirus 16 in prostate cancer: a seroscreening by peptide microarray. Tumour Biol. 2017;39(6):1010428317698371.
pubmed: 28618964
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146(12):2275–89.
pubmed: 11811679 doi: 10.1007/s007050170002
Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13.
pubmed: 10801978 pmcid: 10801978 doi: 10.1073/pnas.100133697
Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol. 2000;74(14):6316–23.
pubmed: 10864641 pmcid: 112137 doi: 10.1128/JVI.74.14.6316-6323.2000

Auteurs

Qiuxia Wang (Q)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China.

Zhihao Sun (Z)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China.

Jingzhi Li (J)

Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China.

Tao Qin (T)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China.

Hongwei Ma (H)

Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China.

Sujuan Chen (S)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. Chensj@yzu.edu.cn.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. Chensj@yzu.edu.cn.
Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. Chensj@yzu.edu.cn.
Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China. Chensj@yzu.edu.cn.

Daxin Peng (D)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. pengdx@yzu.edu.cn.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. pengdx@yzu.edu.cn.
Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. pengdx@yzu.edu.cn.
Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China. pengdx@yzu.edu.cn.

Xiufan Liu (X)

College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH