Identification of a universal antigen epitope of influenza A virus using peptide microarray.
Broad-spectrum
Epitope
Influenza virus
Microarray
Peptide
Journal
BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759
Informations de publication
Date de publication:
07 Jan 2021
07 Jan 2021
Historique:
received:
08
08
2020
accepted:
15
12
2020
entrez:
8
1
2021
pubmed:
9
1
2021
medline:
2
7
2021
Statut:
epublish
Résumé
Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14-4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration.
Sections du résumé
BACKGROUND
BACKGROUND
Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein.
RESULTS
RESULTS
Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14-4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN.
CONCLUSION
CONCLUSIONS
The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration.
Identifiants
pubmed: 33413356
doi: 10.1186/s12917-020-02725-5
pii: 10.1186/s12917-020-02725-5
pmc: PMC7792037
doi:
Substances chimiques
Antigens, Viral
0
Epitopes
0
Hemagglutinin Glycoproteins, Influenza Virus
0
Immune Sera
0
Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22Subventions
Organisme : Key Technologies Research and Development Program
ID : 2017YFD0500701
Organisme : Jiangsu Agricultural Science and Technology Independent Innovation Fund
ID : [CX (18)3018]
Organisme : National Natural Science Foundation of China
ID : 31872473
Organisme : National Natural Science Foundation of China
ID : 31872477
Organisme : National Natural Science Foundation of China
ID : 31602057
Organisme : Jiangsu Provincial Key Research and Development Program
ID : BE2018358
Organisme : Natural Science Foundation of Jiangsu Province
ID : (BK20160456
Références
Graaf MD, Fouchier RAM. Role of receptor binding specificity in influenza a virus transmission and pathogenesis. EMBO J. 2014;33(8):823–41.
pubmed: 24668228
pmcid: 4194109
doi: 10.1002/embj.201387442
Ma MJ, Wang GL, Anderson BD, Bi ZQ, Lu B, Wang XJ, Wang CX, Chen SH, Qian YH, Song SX, Li M. Evidence for cross-species influenza a virus transmission within swine farms, China: a one health, prospective cohort study. Clin Infect Dis. 2018;66(4):533–40.
pubmed: 29401271
doi: 10.1093/cid/cix823
Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14:480.
pubmed: 25186370
pmcid: 4169819
doi: 10.1186/1471-2334-14-480
Peng Y, Li X, Zhou H, Wu A, Dong L, Zhang Y, Gao R, Bo H, Yang L, Wang D, Lin X, Jin M, Shu Y, Jiang T. Continual antigenic diversification in China leads to global antigenic complexity of avian influenza H5N1 viruses. Sci Rep. 2017;7:43566.
pubmed: 28262734
pmcid: 5337931
doi: 10.1038/srep43566
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza a viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53–63.
pubmed: 24675275
doi: 10.1016/j.virusres.2014.03.015
Kumar A, Vn MA, Raut AA, Sood R, Mishra A. Identification of chicken pulmonary miRNAs targeting PB1, PB1-F2, and N40 genes of highly pathogenic avian influenza virus H5N1 in silico. Bioinform Biol Insights. 2014;8:135–45.
pubmed: 25002813
pmcid: 4069037
doi: 10.4137/BBI.S14631
Kamal RP, Alymova IV, York IA. Evolution and virulence of influenza A virus protein PB1-F2. Int J Mol Sci. 2017;19(1):96.
Nachbagauer R, Wohlbold TJ, Hirsh A, Hai R, Sjursen H, Palese P, Cox RJ, Krammer F. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol. 2014;88(22):13260–8.
pubmed: 25210189
pmcid: 4249097
doi: 10.1128/JVI.02133-14
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. New world bats harbor diverse influenza a viruses. PLoS Pathog. 2013;9(10):e1003657.
pubmed: 24130481
pmcid: 3794996
doi: 10.1371/journal.ppat.1003657
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza a viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res. 2018;7(1):1–15.
pubmed: 29399575
pmcid: 5795040
doi: 10.7774/cevr.2018.7.1.1
Fan X, Hashem AM, Chen Z, Li C, Doyle T, Zhang Y, Yi Y, Farnsworth A, Xu K, Li Z, He R, Li X, Wang J. Targeting the HA2 subunit of influenza a virus hemagglutinin via CD40L provides universal protection against diverse subtypes [J]. Mucosal Immunol. 2014;8(1):211.
pubmed: 25052763
pmcid: 4269809
doi: 10.1038/mi.2014.59
Lohia N, Baranwal M. Identification of conserved peptides comprising multiple T cell epitopes of matrix 1 protein in H1N1 influenza virus. Viral Immunol. 2015;28(10):570–9.
pubmed: 26398199
pmcid: 4677511
doi: 10.1089/vim.2015.0060
Ichihashi T, Yoshida R, Sugimoto C, Takada A, Kajino K. Cross-protective peptide vaccine against influenza a viruses developed in HLA-A*2402 human immunity model. PLoS One. 2011;6(9):e24626.
pubmed: 21949735
pmcid: 3176274
doi: 10.1371/journal.pone.0024626
Gangwar RS, Shil P, Cherian SS, Gore MM. Delineation of an epitope on domain I of Japanese encephalitis virus envelope glycoprotein using monoclonal antibodies. Virus Res. 2011;158(1–2):179–87.
pubmed: 21477626
doi: 10.1016/j.virusres.2011.03.030
He JL, Hsieh MS, Juang RH, Wang CH. A monoclonal antibody recognizes a highly conserved neutralizing epitope on hemagglutinin of H6N1 avian influenza virus. Vet Microbiol. 2014;174(3–4):333–41.
pubmed: 25465660
doi: 10.1016/j.vetmic.2014.10.008
Ekiert DC, Bhabha G, Elsliger MA, Friesen RHE, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA. Antibody recognition of a highly conserved influenza virus epitope. Science. 2009;324(5924):246–51.
pubmed: 19251591
pmcid: 19251591
doi: 10.1126/science.1171491
Li Z, Wan Z, Li T, Xie Q, Sun H, Chen H, Liang G, Shao H, Qin A, Ye J. A novel linear epitope crossing group 1 and group 2 influenza a viruses located in the helix a of HA2 derived from H7N9. Vet Microbiol. 2019;228:39–44.
pubmed: 30593378
doi: 10.1016/j.vetmic.2018.11.002
pmcid: 30593378
Zhu Y, Yang D, Ren Q, Yang Y, Liu X, Xu X, Liu W, Chen S, Peng D, Liu X. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet Microbiol. 2015;178(1–2):144–9.
pubmed: 25934533
doi: 10.1016/j.vetmic.2015.04.012
Khurana S, Sasono P, Fox A, Nguyen VK, Golding H. H5N1-serodetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance. J Virol. 2011;85(23):12455–63.
pubmed: 21957281
pmcid: 3209361
doi: 10.1128/JVI.06023-11
Neuvirth H, Raz R, Schreiber G. ProMate: a structure based prediction program to identify the location of protein–protein binding sites. J Mol Biol. 2004;338(1):181–99.
pubmed: 15050833
doi: 10.1016/j.jmb.2004.02.040
Babon JAB, Cruz J, Orphin L, Pazoles P, Co MDT, Ennis FA, Terajima M. Genome-wide screening of human T-cell epitopes in influenza a virus reveals a broad spectrum of CD4+ T-cell responses to internal proteins, hemagglutinins, and neuraminidases. Hum Immunol. 2009;70(9):711–21.
pubmed: 19524006
pmcid: 2767101
doi: 10.1016/j.humimm.2009.06.004
Richards KA, Chaves FA, Sant AJ. The memory phase of the CD4 T-cell response to influenza virus infection maintains its diverse antigen specificity. Immunology. 2011;133(2):246–56.
pubmed: 21517839
pmcid: 3088986
doi: 10.1111/j.1365-2567.2011.03435.x
Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ. Direct ex vivo analyses of HLA-DR1 transgenic mice reveal an exceptionally broad pattern of immunodominance in the primary HLA-DR1-restricted CD4 T-cell response to influenza virus hemagglutinin. J Virol. 2007;81(14):7608–19.
pubmed: 17507491
pmcid: 1933370
doi: 10.1128/JVI.02834-06
Zhao RM, Cui SJ, Guo L, Wu C, Gonzalez R, Paranhos-Baccala G, Vernet G, Wang JW, Hung T. Identification of a highly conserved H1 subtype-specific epitope with diagnostic potential in the hemagglutinin protein of influenza a virus. PLoS One. 2011;6(8):e23374.
pubmed: 21886787
pmcid: 3158760
doi: 10.1371/journal.pone.0023374
Butler D. The ghost of influenza past and the hunt for a universal vaccine. Nature. 2018;560(7717):158–60.
pubmed: 30089927
doi: 10.1038/d41586-018-05889-1
Coughlan L, Palese P. Overcoming barriers in the path to a universal influenza virus vaccine. Cell Host Microbe. 2018;24(1):18–24.
pubmed: 30001520
doi: 10.1016/j.chom.2018.06.016
Krammer F, García-Sastre A, Palese P. Is it possible to develop a "universal" influenza virus vaccine? Toward a universal influenza virus vaccine: potential target antigens and critical aspects for vaccine development. Cold Spring Harb Perspect Biol. 2017;10(7):a028845.
doi: 10.1101/cshperspect.a028845
Paules CI, Fauci AS. A universal flu vaccine is vital. Sci Am. 2018;318(2):8–8.
pubmed: 29337938
doi: 10.1038/scientificamerican0218-8
Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:123.
pubmed: 29467737
pmcid: 5808216
doi: 10.3389/fmicb.2018.00123
Ekiert DC, Friesen RHE, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJWM, Brandenburg B, Vogels R, Brakenhoff JPJ, Kompier R, Koldijk MH, Cornelissen LAHM, Poon LLM, Peiris M, Koudstaal W, Wilson IA, Goudsmit J. A highly conserved neutralizing epitope on group 2 influenza a viruses. Science. 2011;333(6044):843–50.
pubmed: 21737702
pmcid: 3210727
doi: 10.1126/science.1204839
Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC, Albrecht RA, García-Sastre A, Palese P. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza a viruses. J Virol. 2013;87(19):10435–46.
pubmed: 23903831
pmcid: 3807421
doi: 10.1128/JVI.01715-13
Krammer F, Palese P, Steel J. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr Top Microbiol Immunol. 2015;386:301–21.
pubmed: 25007847
Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JPM, Skehel JJ, Lanzavecchia A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza a hemagglutinins. Science. 2011;333(6044):850–6.
pubmed: 21798894
pmcid: 21798894
doi: 10.1126/science.1205669
Su M, Li T, Liu DJ, Wang ZX. A peptide microarray-based fluorescent and resonance light scattering assay for screening thrombin inhibitor. Chin J Anal Chem. 2015;43(2):199–205.
doi: 10.1016/S1872-2040(15)60802-7
Chen JX, Chen MX, Ai L, Chen JH, Chen SH, Zhang YN, Cai YC, Zhu XQ, Zhou XN. A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases. PLoS Negl Trop Dis. 2012;6(11):e1899.
pubmed: 23209851
pmcid: 3510079
doi: 10.1371/journal.pntd.0001899
Lu YD, Li Z, Teng H, Xu HK, Qi SN, He JA, Gu DY, Chen QJ, Ma HW. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases. Sci Rep. 2015;5:13364.
pubmed: 26293607
pmcid: 4543967
doi: 10.1038/srep13364
Sachse K, Rahman KS, Schnee C, Muller E, Peisker M, Schumacher T, Schubert E, Ruettger A, Kaltenboeck B, Ehricht R. A novel synthetic peptide microarray assay detects chlamydia species-specific antibodies in animal and human sera. Sci Rep. 2018;8:4701.
pubmed: 29549361
pmcid: 5856796
doi: 10.1038/s41598-018-23118-7
Braakman I, Helenius J, Helenius A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 1992;11(5):1717–22.
pubmed: 1582407
pmcid: 556629
doi: 10.1002/j.1460-2075.1992.tb05223.x
Xu S, Zhou J, Liu K, Liu Q, Xue C, Li X. Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza a H3N2 virus affect HA thermal stability and fusion activity. Virus Genes. 2013;47(1):20–6.
pubmed: 23749101
doi: 10.1007/s11262-013-0924-0
Holtz KM, Robinson PS, Matthews EE, Hashimoto Y, McPherson CE, Khramtsov N, Reifler MJ, Meghrous J, Rhodes DG, Cox MM. Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC Biotechnol. 2014;14(1):111.
pubmed: 25540031
doi: 10.1186/s12896-014-0111-y
Guo C, Zhang H, Xie X, Liu Y, Sun L, Li H, Yu P, Hu H, Sun J, Li Y, Feng Q, Zhao X, Liang D, Wang Z, Hu J. H1N1 influenza virus epitopes classified by monoclonal antibodies. Exp Ther Med. 2018;16(3):2001–7.
pubmed: 30186431
pmcid: 6122413
Wang Z, Huang B, Thomas M, Sreenivasan CC, Sheng Z, Yu J, Hause BM, Wang D, Francis DH, Kaushik RS, Li F. Detailed mapping of the linear B cell epitopes of the hemagglutinin (HA) protein of swine influenza virus. Virology. 2018;522:131–7.
pubmed: 30029012
doi: 10.1016/j.virol.2018.07.013
Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wang X, Zhu Y, Peng D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine. 2016;34(3):350–7.
pubmed: 26638027
doi: 10.1016/j.vaccine.2015.11.045
Zhao X, Zhou Z, Chen Y, Chen W, Ma H, Pu J. Role of antibodies to human papillomavirus 16 in prostate cancer: a seroscreening by peptide microarray. Tumour Biol. 2017;39(6):1010428317698371.
pubmed: 28618964
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146(12):2275–89.
pubmed: 11811679
doi: 10.1007/s007050170002
Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13.
pubmed: 10801978
pmcid: 10801978
doi: 10.1073/pnas.100133697
Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol. 2000;74(14):6316–23.
pubmed: 10864641
pmcid: 112137
doi: 10.1128/JVI.74.14.6316-6323.2000