Immortalization of primary sheep embryo kidney cells.


Journal

In vitro cellular & developmental biology. Animal
ISSN: 1543-706X
Titre abrégé: In Vitro Cell Dev Biol Anim
Pays: Germany
ID NLM: 9418515

Informations de publication

Date de publication:
Jan 2021
Historique:
received: 06 03 2020
accepted: 13 10 2020
pubmed: 9 1 2021
medline: 25 9 2021
entrez: 8 1 2021
Statut: ppublish

Résumé

Sheep primary epithelial cells are short-lived in cell culture systems. For long-term in vitro studies, primary cells need to be immortalized. This study aims to establish and characterize T immortalized sheep embryo kidney cells (TISEKC). In this study, we used fetal lamb kidneys to derive primary cultures of epithelial cells. We subsequently immortalized these cells using the large T SV40 antigen to generate crude TISEKC and isolate TISEKC clones. Among numerous clones of immortalized cells, the selected TISEKC-5 maintained active division and cell growth over 20 passages but lacked expression of the oncogenic large T SV40 antigen. Morphologically, TISEKC-5 maintained their epithelial aspect similar to the parental primary epithelial cells. However, their growth properties showed quite different patterns. Crude TISEKC, as well as the clones of TISEKC proliferated highly in culture compared to the parental primary cells. In the early passages, immortalized cells showed heterogeneous polyploidy but in the late passages the karyotype of immortalized cells became progressively stable, identical to that of the primary cells, because the TISEKC-5 cell line has lost the large SV40 T antigen expression, this cell line is a valuable tool for veterinary sciences and biotechnological productions.

Identifiants

pubmed: 33415664
doi: 10.1007/s11626-020-00520-y
pii: 10.1007/s11626-020-00520-y
doi:

Substances chimiques

Antigens, Viral, Tumor 0
DNA, Viral 0
Vimentin 0
Serum Albumin, Bovine 27432CM55Q
Keratins 68238-35-7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

76-85

Subventions

Organisme : Communauté Université Grenoble Alpes
ID : FR-2015
Organisme : Institut National de la recherche Agronomique
ID : SA 2010-2015

Références

Ahuja D, Sáenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24:7729–7745
doi: 10.1038/sj.onc.1209046
Ali SH, Kasper JS, Arai T, De Caprio JA (2004) Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78:2749–2757
doi: 10.1128/JVI.78.6.2749-2757.2004
An P, Sáenz Robles MT, Pipas JM (2012) Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 66:213–236
doi: 10.1146/annurev-micro-092611-150154
Babiuk S, Parkyn G, Copps J, Larence JE, Sabara MI, Bowden TR, Boyle DB, Kitching RP (2007) Evaluation of an ovine testis cell line (OA3.Ts) for propagation of capripoxvirus isolates and development of an immunostaining technique for viral plaque visualization. J Vet Diagn Investig 19:486–491. https://doi.org/10.1177/104063870701900505
doi: 10.1177/104063870701900505
Banks-Schlegel SP, Howlev PM (1983) Differentiation of human epidermal cells transformed by SV40. J Cell Biol 96:330–337
doi: 10.1083/jcb.96.2.330
Bloomfield M, Duesberg P (2015) Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells. Mol Cytogenet 8:79
doi: 10.1186/s13039-015-0183-y
Cascio SM (2001) Novel strategies for immortalization of human hepatocytes. Artif Organs 25:529–538
doi: 10.1046/j.1525-1594.2001.025007529.x
Chang TH, Ray FA, Thompson DA, Schlegel R (1997) Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14:2383–2393
doi: 10.1038/sj.onc.1201196
Colvin EK, Weir C, Ikin RJ, Hudson AL (2014) SV40 TAg mouse models of cancer. Semin Cell Dev Biol 27:61–73
doi: 10.1016/j.semcdb.2014.02.004
Cotsiki M, Lock RL, Cheng Y, Williams GL, Zhao J, Perera D, Freire R, Entwistle A, Golemis EA, Roberts TM, Jat PS, Gjoerup OV (2004) Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A 101:947–952
doi: 10.1073/pnas.0308006100
Da Silva Teixeira MF, Lambert V, Mselli-Lakahl L, Chettab A, Chebloune Y, Morex JF (1997) Immortalization of caprine fibroblasts permissive for replication of small ruminant lentiviruses. AJVR 58(6):579–584
De Lange M (1959) The histology of the cytopathic changes produced in monolayer of epithelial cultures by viruses associated with lumpy skin disease. Onderstepoort J Vet Res 28:245–255
European Food Safety Authority (EU body or agency) (2018) Veterinary sector and animal health, slaughter animal, slaughter of animals. https://doi.org/10.2805/270833
Gaush CR, Hard WL, Smith TF (1966) Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122:931–935
doi: 10.3181/00379727-122-31293
Gluzman Y, Otsuka H, Kit S (1980) Origin-defective mutants of SV40. Cold Spring Harb Symp Quant Biol 44:293–300
doi: 10.1101/SQB.1980.044.01.033
Gómez-Lechón MJ, Donato MT, Castell JV, Jover R (2003) Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 4(292):312–312. https://doi.org/10.2174/1389200033489424
doi: 10.2174/1389200033489424
Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74. https://doi.org/10.1099/0022-1317-36-1-59
doi: 10.1099/0022-1317-36-1-59 pubmed: 886304
Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat PS, Roberts TM, Gjoerup OV (2009) Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83(1):117–127
doi: 10.1128/JVI.01515-08
Hu L, Filippakis H, Huang H, Yen TJ, Gjoerup OV (2013) Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen. J Virol 87(24):13179–13192
doi: 10.1128/JVI.02224-13
Jat PS, Sharp PA (1986) Large T antigen of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. J Virol 59:746–750
doi: 10.1128/JVI.59.3.746-750.1986
Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ (1991) Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc Natl Acad Sci U S A 88:6427–6431
doi: 10.1073/pnas.88.15.6427
Lock RL, Benvenuti S, Jat PS (2004) Immortalization by Sv40 large T antigen. In: Stein GS, Pardee AB (eds) Cell Cycle and Growth Control: Biomolecular Regulation and Cancer second, pp 15–92
Madin SH, Darby NB Jr (1958) Established kidney cell lines of normal adult bovine and ovinorigin. Proc Soc Exp Biol Med 98:574–576
doi: 10.3181/00379727-98-24111
Martini F, Corallini A, Balatti V, Sabbioni S, Pancaldi C, Tognon M (2007) Simian virus 40 in humans. Infect Agent Cancer 2:13
doi: 10.1186/1750-9378-2-13
Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101(1):16–22
doi: 10.1073/pnas.2235688100
Ray FA, Kraemer PM (1993) Iterative chromosome mutation and selection as a mechanism of complete transformation of human diploid fibroblasts by SV4O large T antigen. Carcinogenesis 14:15111516
doi: 10.1093/carcin/14.8.1511
Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42:13–31
doi: 10.1002/jcb.240420103
Sachsenmeier KF, Pipas JM (2001) Inhibition of Rb and p53 is insufficient for SV40 T-antigen transformation. Virology 283:40–48
doi: 10.1006/viro.2001.0866
Schafer KA (1998) The cell cycle: a review. Vet Pathol 35:461–478
doi: 10.1177/030098589803500601
Schiller JH, Bittner G, Wu SQ, Meisner L (1998) Karyotypic changes associated with spontaneous acquisition and loss of tumorigenicity in a human transformed bronchial epithelial cell line: evidence for in vivo selection of transformed clones. In Vitro Cell Dev Biol Anim 34:283–289
doi: 10.1007/s11626-998-0004-2
Shay JW, Wright WE (1989) Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV4O large T-antigen. Exp Cell Res 184:109–118
doi: 10.1016/0014-4827(89)90369-8
Simizu B et al (1967) Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero). Proc Soc Exp Biol Med 125:19–123
doi: 10.3181/00379727-125-32029
Stewart N, Bacchetti S (1991) Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180:49–57
doi: 10.1016/0042-6822(91)90008-Y
Taylor WP, Abegunde A (1979) The isolation of peste des petits ruminants virus from Nigerian sheep and goats. Res Vet Sci 26(1):94–96
doi: 10.1016/S0034-5288(20)30949-8
Wei W, Jobling WA, Chen W, Hahn WC, Sedivy JM (2003) Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23:2859–2870
doi: 10.1128/MCB.23.8.2859-2870.2003
Welcker M, Clurman BE (2005) The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J Biol Chem 280:7654–7658
doi: 10.1074/jbc.M413377200
Woods C, LeFeuvre C, Stewart N, Bacchetti S (1994) Induction of genomic instability in SV40 transformed human cells: sufficiency of the N-terminal 147 amino acids of large T antigen and role of pRB and p53. Oncogene 9:2943–2950
pubmed: 8084597
Wu X, Avni D, Chiba T, Yan F, Zhao Q, Lin Y, Heng H, Livingston D (2004) SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18:1305–1316
doi: 10.1101/gad.1182804

Auteurs

N Seridi (N)

Laboratory of Molecular and Cellular Biology, Unit of Genetics, Faculty of Biological Sciences, University of Sciences and Technology "Houari Boumediene", Algiers, Algeria.

M Hamidouche (M)

Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria.

N Belmessabih (N)

Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria.

S El Kennani (S)

INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France.

J Gagnon (J)

INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France.

G Martinez (G)

CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France.

C Coutton (C)

CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France.

T Marchal (T)

VetAgro Sup, UPSP ICE 2011.03.101, Laboratoire d'Histopathologie, Université de Lyon, Marcy-l'Etoile, France.

Y Chebloune (Y)

INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France. ychebloune@inrae.fr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH