An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence.
Adaptation, Physiological
/ drug effects
Animals
Antineoplastic Agents
/ pharmacology
Apoptosis
/ genetics
Cell Line
Cell Line, Tumor
Cyclin-Dependent Kinase 9
/ genetics
Diapause
/ drug effects
Embryo, Mammalian
/ drug effects
Female
HEK293 Cells
Humans
MCF-7 Cells
Mice
Proto-Oncogene Proteins c-myc
/ genetics
Transcription Factors
/ genetics
Transcription, Genetic
/ genetics
Up-Regulation
/ drug effects
CDK9
CRISPR
MYC
adaptation to stress
breast cancer
cancer
diapause
drug persistence
prostate cancer
residual tumor
Journal
Cancer cell
ISSN: 1878-3686
Titre abrégé: Cancer Cell
Pays: United States
ID NLM: 101130617
Informations de publication
Date de publication:
08 02 2021
08 02 2021
Historique:
received:
31
01
2020
revised:
19
10
2020
accepted:
02
12
2020
pubmed:
9
1
2021
medline:
29
9
2021
entrez:
8
1
2021
Statut:
ppublish
Résumé
Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.
Identifiants
pubmed: 33417832
pii: S1535-6108(20)30609-7
doi: 10.1016/j.ccell.2020.12.002
pmc: PMC8670073
mid: NIHMS1662675
pii:
doi:
Substances chimiques
Antineoplastic Agents
0
Proto-Oncogene Proteins c-myc
0
Transcription Factors
0
Cyclin-Dependent Kinase 9
EC 2.7.11.22
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
240-256.e11Subventions
Organisme : NCRR NIH HHS
ID : S10 RR028832
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA179483
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA208100
Pays : United States
Organisme : Department of Defense
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Interests E.D. and C.S.M. are co-inventors on a patent related to the use of 3D cultures. Y.C. reports personal fees from Oric Pharmaceuticals outside the submitted work. R.J. reports research funding from Pfizer and Lilly and consulting for Carrick and Luminex. M.B. reports sponsored research support from Novartis; serves on the science advisory board (SAB) of and received fees from Kronos Bio, GV20 Oncotherapy, and H3 Biomedicine; and holds equity in Kronos Bio and GV20 Oncotherapy. N.S.G. is a founder, SAB member, and equity holder in Gatekeeper, Syros, Petra, C4, Allorion, Jengu, Inception, B2S, and Soltego (board member) and his lab receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Jansen, Kinogen, Her2llc, Deerfield, and Sanofi. C.S.M. discloses research funding from Janssen/Johnson & Johnson, Teva, EMD Serono, Abbvie, Arch Oncology, Karyopharm, Sanofi, and Nurix; employment of a relative with Takeda; and consultant/honoraria from Fate Therapeutics, Ionis Pharmaceuticals, and FIMECS.
Références
Ann Oncol. 2001 Jan;12(1):23-7
pubmed: 11249045
Nat Biotechnol. 2016 Apr;34(4):419-23
pubmed: 26928769
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Genome Biol. 2014;15(12):550
pubmed: 25516281
Dev Cell. 2015 Nov 9;35(3):366-82
pubmed: 26555056
Genome Biol. 2014;15(12):554
pubmed: 25476604
Blood. 2012 Apr 12;119(15):e131-8
pubmed: 22289890
Cancer Res. 2013 Mar 15;73(6):1821-30
pubmed: 23467612
Nat Rev Drug Discov. 2019 Aug;18(8):609-628
pubmed: 31273347
Nat Genet. 2017 Dec;49(12):1779-1784
pubmed: 29083409
FEBS Lett. 2004 Aug 27;573(1-3):83-92
pubmed: 15327980
Cell. 1992 Apr 3;69(1):119-28
pubmed: 1555236
Cell. 2015 Feb 26;160(5):977-989
pubmed: 25723171
Nat Med. 2011 Oct 23;17(11):1514-20
pubmed: 22019887
Cell. 2014 Sep 25;159(1):176-187
pubmed: 25201530
Nat Rev Cancer. 2007 Nov;7(11):834-46
pubmed: 17957189
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nat Protoc. 2009;4(8):1184-91
pubmed: 19617889
Cell. 2011 Sep 16;146(6):904-17
pubmed: 21889194
EMBO Mol Med. 2016 May 02;8(5):527-49
pubmed: 27006338
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Biomaterials. 2010 May;31(13):3622-30
pubmed: 20149444
Methods Mol Biol. 2016;1418:67-90
pubmed: 27008010
Genes Dev. 2009 Nov 15;23(22):2563-77
pubmed: 19933147
Nucleic Acids Res. 2017 Jan 4;45(D1):D723-D729
pubmed: 27899570
Cold Spring Harb Perspect Med. 2014 Jul 01;4(7):a014407
pubmed: 24985130
Cell. 2010 Apr 2;141(1):69-80
pubmed: 20371346
Development. 2014 Jan;141(1):219-23
pubmed: 24346702
J Biosci. 2005 Feb;30(1):103-18
pubmed: 15824446
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
Semin Cancer Biol. 2006 Aug;16(4):275-87
pubmed: 16945552
Clin Cancer Res. 2012 Feb 15;18(4):1109-19
pubmed: 22235097
Cell. 2009 Mar 6;136(5):823-37
pubmed: 19269363
Development. 2017 Sep 15;144(18):3199-3210
pubmed: 28928280
Mol Cell. 2002 May;9(5):1031-44
pubmed: 12049739
Nat Chem Biol. 2016 Jul;12(7):531-8
pubmed: 27214401
Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6
pubmed: 25361974
Cancer Cell. 2006 Sep;10(3):175-6
pubmed: 16959608
Cell. 2013 Apr 11;153(2):320-34
pubmed: 23582323
BMC Bioinformatics. 2012;13 Suppl 16:S12
pubmed: 23176165
Cell. 2018 May 3;173(4):879-893.e13
pubmed: 29681456
Nature. 2004 Oct 28;431(7012):1112-7
pubmed: 15475948
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Nat Rev Cancer. 2020 Jul;20(7):398-411
pubmed: 32488200
Nat Rev Cancer. 2018 Jul;18(7):407-418
pubmed: 29692415
Int J Cancer. 2018 Feb 1;142(3):618-628
pubmed: 28940389
Nat Chem Biol. 2018 Feb;14(2):163-170
pubmed: 29251720
Cell. 2013 Jan 31;152(3):620-32
pubmed: 23352430
Semin Cancer Biol. 2019 Dec;59:125-132
pubmed: 31323288
Nature. 2016 Dec 1;540(7631):119-123
pubmed: 27880763
Cancer Cell. 2002 Sep;2(3):205-16
pubmed: 12242153
Sci Transl Med. 2019 Apr 17;11(488):
pubmed: 30996079
Hum Mutat. 2015 Apr;36(4):E2423-9
pubmed: 25703262
Nat Med. 2016 Mar;22(3):262-9
pubmed: 26828195
Nucleic Acids Res. 2013 Jan;41(Database issue):D793-800
pubmed: 23143270
Cell. 2016 Feb 11;164(4):668-80
pubmed: 26871632
Biol Chem. 2016 Jul 1;397(7):671-8
pubmed: 26910743
Lancet. 2014 Jul 12;384(9938):164-72
pubmed: 24529560
Int J Dev Biol. 2014;58(2-4):163-74
pubmed: 25023682
Breast Cancer Res. 2015 May 29;17:73
pubmed: 26021444
Elife. 2015 Jun 17;4:e06535
pubmed: 26083714