Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
08 01 2021
08 01 2021
Historique:
received:
11
02
2020
accepted:
07
12
2020
entrez:
9
1
2021
pubmed:
10
1
2021
medline:
3
7
2021
Statut:
epublish
Résumé
Copper is both essential and toxic to living beings, which tightly controls its intracellular concentration. At the host-pathogen interface, copper is used by phagocytic cells to kill invading microorganisms. We investigated copper homeostasis in Bordetella pertussis, which lives in the human respiratory mucosa and has no environmental reservoir. B. pertussis has considerably streamlined copper homeostasis mechanisms relative to other Gram-negative bacteria. Its single remaining defense line consists of a metallochaperone diverted for copper passivation, CopZ, and two peroxide detoxification enzymes, PrxGrx and GorB, which together fight stresses encountered in phagocytic cells. Those proteins are encoded by an original, composite operon assembled in an environmental ancestor, which is under sensitive control by copper. This system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. Combining responses to co-occurring stresses in a tailored operon reveals a strategy adopted by a host-restricted pathogen to optimize survival at minimal energy expenditure.
Identifiants
pubmed: 33420409
doi: 10.1038/s42003-020-01580-2
pii: 10.1038/s42003-020-01580-2
pmc: PMC7794356
doi:
Substances chimiques
Peroxides
0
Copper
789U1901C5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
46Références
Solioz, M. Copper and Bacteria. Evolution, homeostasis and toxicity, Springer Nature Switzerland AG, Cham, Switzerland (2018).
Chillappagari, S. et al. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J. Bacteriol. 192, 2512–2524 (2010).
pubmed: 20233928
pmcid: 2863568
doi: 10.1128/JB.00058-10
Macomber, L. & Imlay, J. A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl Acad. Sci. USA 106, 8344–8349 (2009).
pubmed: 19416816
doi: 10.1073/pnas.0812808106
pmcid: 2688863
Dalecki, A. G., Crawford, C. L. & Wolschendorf, F. Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv. Micro. Physiol. 70, 193–260 (2017).
doi: 10.1016/bs.ampbs.2017.01.007
Hodgkinson, V. & Petris, M. J. Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 287, 13549–13555 (2012).
pubmed: 22389498
pmcid: 3340201
doi: 10.1074/jbc.R111.316406
Migocka, M. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life 67, 737–745 (2015).
pubmed: 26422816
doi: 10.1002/iub.1437
O’Halloran, T. V. & Culotta, V. C. Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060 (2000).
pubmed: 10816601
doi: 10.1074/jbc.R000006200
Stafford, S. L. et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep. 33, e00049 (2013).
White, C., Lee, J., Kambe, T., Fritsche, K. & Petris, M. J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949–33956 (2009).
pubmed: 19808669
pmcid: 2797165
doi: 10.1074/jbc.M109.070201
Hao, X. et al. A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. Mol. Microbiol 102, 628–641 (2016).
pubmed: 27528008
doi: 10.1111/mmi.13483
Sheldon, J. R. & Skaar, E. P. Metals as phagocyte antimicrobial effectors. Curr. Opin. Immunol. 60, 1–9 (2019).
pubmed: 31063946
pmcid: 6800623
doi: 10.1016/j.coi.2019.04.002
Chandrangsu, P., Rensing, C. & Helmann, J. D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol 15, 338–350 (2017).
pubmed: 28344348
pmcid: 5963929
doi: 10.1038/nrmicro.2017.15
Ladomersky, E. & Petris, M. J. Copper tolerance and virulence in bacteria. Metallomics 7, 957–964 (2015).
pubmed: 25652326
doi: 10.1039/C4MT00327F
Arguello, J. M., Raimunda, D. & Padilla-Benavides, T. Mechanisms of copper homeostasis in bacteria. Front Cell Infect. Microbiol 3, 73 (2013).
pubmed: 24205499
pmcid: 3817396
doi: 10.3389/fcimb.2013.00073
Singh, S. K., Grass, G., Rensing, C. & Montfort, W. R. Cuprous oxidase activity of CueO from Escherichia coli. J. Bacteriol. 186, 7815–7817 (2004).
pubmed: 15516598
pmcid: 524913
doi: 10.1128/JB.186.22.7815-7817.2004
Durand, A. et al. c-Type cytochrome assembly is a key target of copper toxicity within the bacterial periplasm. mBio 6, e01007–e01015 (2015).
pubmed: 26396241
pmcid: 4600104
doi: 10.1128/mBio.01007-15
Novoa-Aponte, L., Ramirez, D. & Arguello, J. M. The interplay of the metallosensor CueR with two distinct CopZ chaperones defines copper homeostasis in Pseudomonas aeruginosa. J. Biol. Chem. 294, 4934–4945 (2019).
pubmed: 30718281
pmcid: 6442026
doi: 10.1074/jbc.RA118.006316
Antoine, R., Rivera-Millot, A., Roy, G. & Jacob-Dubuisson, F. Relationships between copper-related proteomes and lifestyles in beta proteobacteria. Front Microbiol 10, 2217 (2019).
pubmed: 31608037
pmcid: 6769254
doi: 10.3389/fmicb.2019.02217
Melvin, J. A., Scheller, E. V., Miller, J. F. & Cotter, P. A. Bordetella pertussis pathogenesis: current and future challenges. Nat. Rev. Microbiol. 12, 274–288 (2014).
pubmed: 24608338
pmcid: 4205565
doi: 10.1038/nrmicro3235
Capdevila, D. A., Edmonds, K. A. & Giedroc, D. P. Metallochaperones and metalloregulation in bacteria. Essays Biochem. 61, 177–200 (2017).
pubmed: 28487396
pmcid: 5858914
doi: 10.1042/EBC20160076
Rademacher, C. & Masepohl, B. Copper-responsive gene regulation in bacteria. Microbiology 158, 2451–2464 (2012).
pubmed: 22918892
doi: 10.1099/mic.0.058487-0
Kidd, S. P. & Brown, N. L. ZccR–a MerR-like regulator from Bordetella pertussis which responds to zinc, cadmium, and cobalt. Biochem Biophys. Res Commun. 302, 697–702 (2003).
pubmed: 12646225
doi: 10.1016/S0006-291X(03)00249-3
Helbig, K., Bleuel, C., Krauss, G. J. & Nies, D. H. Glutathione and transition-metal homeostasis in Escherichia coli. J. Bacteriol. 190, 5431–5438 (2008).
pubmed: 18539744
pmcid: 2493246
doi: 10.1128/JB.00271-08
Radford, D. S. et al. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett. 220, 105–112 (2003).
pubmed: 12644235
doi: 10.1016/S0378-1097(03)00095-8
Hearnshaw, S. et al. A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ. Biochemistry 48, 9324–9326 (2009).
pubmed: 19746989
doi: 10.1021/bi9011995
Rouhier, N. & Jacquot, J. P. Molecular and catalytic properties of a peroxiredoxin-glutaredoxin hybrid from Neisseria meningitidis. FEBS Lett. 554, 149–153 (2003).
pubmed: 14596930
doi: 10.1016/S0014-5793(03)01156-6
Vergauwen, B. et al. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem. 276, 20890–20897 (2001).
pubmed: 11399772
doi: 10.1074/jbc.M102026200
Pauwels, F., Vergauwen, B., Vanrobaeys, F., Devreese, B. & Van Beeumen, J. J. Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity. J. Biol. Chem. 278, 16658–16666 (2003).
pubmed: 12606554
doi: 10.1074/jbc.M300157200
Omsland, A., Miranda, K. M., Friedman, R. L. & Boitano, S. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses. FEMS Microbiol Lett. 284, 92–101 (2008).
pubmed: 18462394
doi: 10.1111/j.1574-6968.2008.01181.x
Yamamoto, K. & Ishihama, A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56, 215–227 (2005).
pubmed: 15773991
doi: 10.1111/j.1365-2958.2005.04532.x
Green, J. & Paget, M. S. Bacterial redox sensors. Nat. Rev. Microbiol 2, 954–966 (2004).
pubmed: 15550941
doi: 10.1038/nrmicro1022
Hillion, M. & Antelmann, H. Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444 (2015).
pubmed: 25720121
pmcid: 4438307
doi: 10.1515/hsz-2015-0102
Imlay, J. A. Where in the world do bacteria experience oxidative stress? Environ. Microbiol 21, 521–530 (2019).
pubmed: 30307099
doi: 10.1111/1462-2920.14445
Samanovic, M. I., Ding, C., Thiele, D. J. & Darwin, K. H. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11, 106–115 (2012).
pubmed: 22341460
pmcid: 3285254
doi: 10.1016/j.chom.2012.01.009
Quintana, J., Novoa-Aponte, L. & Arguello, J. M. Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J. Biol. Chem. 292, 15691–15704 (2017).
pubmed: 28760827
pmcid: 5612103
doi: 10.1074/jbc.M117.804492
Taylor-Mulneix, D. L. et al. Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 15, e2000420 (2017).
pubmed: 28403138
pmcid: 5389573
doi: 10.1371/journal.pbio.2000420
Andreasen, C. & Carbonetti, N. H. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussisrespiratory tract infection in mice. Infect. Immun. 76, 5139–5148 (2008).
pubmed: 18765723
pmcid: 2573337
doi: 10.1128/IAI.00895-08
Ahmad, J. N. et al. Bordetella adenylate cyclase toxin inhibits monocyte-to-macrophage transition and dedifferentiates human alveolar macrophages into monocyte-like cells. mBio 10, 01743–19 (2019).
doi: 10.1128/mBio.01743-19
Lamberti, Y. A., Hayes, J. A., Perez Vidakovics, M. L., Harvill, E. T. & Rodriguez, M. E. Intracellular trafficking of Bordetella pertussis in human macrophages. Infect. Immun. 78, 907–913 (2010).
pubmed: 20065021
pmcid: 2825910
doi: 10.1128/IAI.01031-09
Cafiero, J. H., Lamberti, Y. A., Surmann, K., Vecerek, B. & Rodriguez, M. E. A Bordetella pertussis MgtC homolog plays a role in the intracellular survival. PLoS One 13, e0203204 (2018).
pubmed: 30161230
pmcid: 6117051
doi: 10.1371/journal.pone.0203204
Lamberti, Y., Perez Vidakovics, M. L., van der Pol, L. W. & Rodriguez, M. E. Cholesterol-rich domains are involved in Bordetella pertussis phagocytosis and intracellular survival in neutrophils. Micro. Pathog. 44, 501–511 (2008).
doi: 10.1016/j.micpath.2008.01.002
Boyd, A. P. et al. Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J. Immunol. 175, 730–738 (2005).
pubmed: 16002668
doi: 10.4049/jimmunol.175.2.730
Carbonetti, N. H. Immunomodulation in the pathogenesis of Bordetella pertussis infection and disease. Curr. Opin. Pharm. 7, 272–278 (2007).
doi: 10.1016/j.coph.2006.12.004
Fedele, G., Bianco, M. & Ausiello, C. M. The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch. Immunol. Ther. Exp. (Warsz.) 61, 445–457 (2013).
doi: 10.1007/s00005-013-0242-1
de Gouw, D., Diavatopoulos, D. A., Bootsma, H. J., Hermans, P. W. & Mooi, F. R. Pertussis: a matter of immune modulation. FEMS Microbiol Rev. 35, 441–474 (2011).
pubmed: 21204863
doi: 10.1111/j.1574-6976.2010.00257.x
Utz, M. et al. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb3 oxidase assembly. Mol. Microbiol 111, 764–783 (2019).
pubmed: 30582886
pmcid: 6417943
doi: 10.1111/mmi.14190
Brose, J., La Fontaine, S., Wedd, A. G. & Xiao, Z. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Metallomics 6, 793–808 (2014).
pubmed: 24522867
doi: 10.1039/C4MT00020J
Hatori, Y. & Lutsenko, S. An expanding range of functions for the copper chaperone/antioxidant protein Atox1. Antioxid. Redox Signal 19, 945–957 (2013).
pubmed: 23249252
pmcid: 3763234
doi: 10.1089/ars.2012.5086
Hamidou Soumana, I., Linz, B. & Harvill, E. T. Environmental origin of the genus Bordetella. Front Microbiol 8, 28 (2017).
pubmed: 28174558
pmcid: 5258731
doi: 10.3389/fmicb.2017.00028
Rivera, I. et al. Conservation of ancient genetic pathways for intracellular persistence among animal pathogenic bordetellae. Front Microbiol. 10, 2839 (2019).
pubmed: 31921025
pmcid: 6917644
doi: 10.3389/fmicb.2019.02839
Koh, E. I., Robinson, A. E., Bandara, N., Rogers, B. E. & Henderson, J. P. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 13, 1016–1021 (2017).
pubmed: 28759019
pmcid: 5562518
doi: 10.1038/nchembio.2441
Rivera-Millot, A. et al. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis. PLoS ONE 12, e0176396 (2017).
pubmed: 28493897
pmcid: 5426589
doi: 10.1371/journal.pone.0176396
Antoine, R. et al. New virulence-activated and virulence-repressed genes identified by systematic gene inactivation and generation of transcriptional fusions in Bordetella pertussis. J. Bacteriol. 182, 5902–5905 (2000).
pubmed: 11004193
pmcid: 94716
doi: 10.1128/JB.182.20.5902-5905.2000
Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).
pubmed: 8529885
doi: 10.1016/0378-1119(95)00584-1
Lesne, E. et al. Distinct virulence ranges for infection of mice by Bordetella pertussis revealed by engineering of the sensor-kinase BvgS. PLoS ONE 13, e0204861 (2018).
pubmed: 30307950
pmcid: 6181320
doi: 10.1371/journal.pone.0204861
Veyron-Churlet, R. et al. Rv0613c/MSMEG_1285 Interacts with HBHA and mediates its proper cell-surface exposure in Mycobacteria. Int. J. Mol. Sci. 19, 1673 (2018).
pmcid: 6032435
doi: 10.3390/ijms19061673
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res 125, 279–284 (2001).
pubmed: 11682119
doi: 10.1016/S0166-4328(01)00297-2
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
pubmed: 22743772
Solans, L. et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 11, 1753–1762 (2018).
pubmed: 30115992
doi: 10.1038/s41385-018-0073-9
Frith, M. C., Saunders, N. F. W., Kobe, B. & Bailey, T. L. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 4, e1000071 (2008).
Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).
doi: 10.1186/1471-2105-11-431
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1), D442–D450 (2019).
pubmed: 30395289
doi: 10.1093/nar/gky1106