Alveolar compartmentalization of inflammatory and immune cell biomarkers in pneumonia-related ARDS.


Journal

Critical care (London, England)
ISSN: 1466-609X
Titre abrégé: Crit Care
Pays: England
ID NLM: 9801902

Informations de publication

Date de publication:
09 01 2021
Historique:
received: 22 09 2020
accepted: 07 12 2020
entrez: 10 1 2021
pubmed: 11 1 2021
medline: 6 8 2021
Statut: epublish

Résumé

Biomarkers of disease severity might help individualizing the management of patients with the acute respiratory distress syndrome (ARDS). Whether the alveolar compartmentalization of biomarkers has a clinical significance in patients with pneumonia-related ARDS is unknown. This study aimed at assessing the interrelation of ARDS/sepsis biomarkers in the alveolar and blood compartments and explored their association with clinical outcomes. Immunocompetent patients with pneumonia-related ARDS admitted between 2014 and 2018 were included in a prospective monocentric study. Bronchoalveolar lavage (BAL) fluid and blood samples were obtained within 48 h of admission. Twenty-two biomarkers were quantified in BAL fluid and serum. HLA-DR Seventy ARDS patients were included. Hospital mortality was 21.4%. The BAL fluid-to-serum ratio of IL-8 was 20 times higher in ARDS patients than in controls (p < 0.0001). ARDS patients with shock had lower BAL fluid-to-serum ratio of IL-1Ra (p = 0.026), IL-6 (p = 0.002), IP-10/CXCL10 (p = 0.024) and IL-10 (p = 0.023) than others. The BAL fluid-to-serum ratio of IL-1Ra was more elevated in hospital survivors than decedents (p = 0.006), even after adjusting for SOFA and driving pressure (p = 0.036). There was no significant association between alveolar or alveolar/blood monocytic HLA-DR or CD8 IL-8 was the most compartmentalized cytokine and lower BAL fluid-to-serum concentration ratios of IL-1Ra were associated with hospital mortality in patients with pneumonia-associated ARDS.

Sections du résumé

BACKGROUND
Biomarkers of disease severity might help individualizing the management of patients with the acute respiratory distress syndrome (ARDS). Whether the alveolar compartmentalization of biomarkers has a clinical significance in patients with pneumonia-related ARDS is unknown. This study aimed at assessing the interrelation of ARDS/sepsis biomarkers in the alveolar and blood compartments and explored their association with clinical outcomes.
METHODS
Immunocompetent patients with pneumonia-related ARDS admitted between 2014 and 2018 were included in a prospective monocentric study. Bronchoalveolar lavage (BAL) fluid and blood samples were obtained within 48 h of admission. Twenty-two biomarkers were quantified in BAL fluid and serum. HLA-DR
RESULTS
Seventy ARDS patients were included. Hospital mortality was 21.4%. The BAL fluid-to-serum ratio of IL-8 was 20 times higher in ARDS patients than in controls (p < 0.0001). ARDS patients with shock had lower BAL fluid-to-serum ratio of IL-1Ra (p = 0.026), IL-6 (p = 0.002), IP-10/CXCL10 (p = 0.024) and IL-10 (p = 0.023) than others. The BAL fluid-to-serum ratio of IL-1Ra was more elevated in hospital survivors than decedents (p = 0.006), even after adjusting for SOFA and driving pressure (p = 0.036). There was no significant association between alveolar or alveolar/blood monocytic HLA-DR or CD8
CONCLUSIONS
IL-8 was the most compartmentalized cytokine and lower BAL fluid-to-serum concentration ratios of IL-1Ra were associated with hospital mortality in patients with pneumonia-associated ARDS.

Identifiants

pubmed: 33422148
doi: 10.1186/s13054-020-03427-y
pii: 10.1186/s13054-020-03427-y
pmc: PMC7794625
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Observational Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

23

Subventions

Organisme : Société de Réanimation de Langue Française (FR)
ID : 2013 Clinical Research Grant
Pays : International

Commentaires et corrections

Type : CommentIn

Références

Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788.
pubmed: 26903337
National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.
Perkins GD, McAuley DF, Thickett DR, Gao F. The β-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173:281–7.
pubmed: 16254268
McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695–703.
pubmed: 25268516
Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2010;137:288–96.
pubmed: 19858233
Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.
pubmed: 24853585 pmcid: 4154544
Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–8.
pubmed: 27513822 pmcid: 5328179
García-Laorden MI, Lorente JA, Flores C, Slutsky AS, Villar J. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann Transl Med. 2017;5:283.
pubmed: 28828358 pmcid: 5537109
Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet Lond Engl. 1993;341:643–7.
van der Zee P, Rietdijk W, Somhorst P, Endeman H, Gommers D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit Care Lond Engl. 2020;24:243.
ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012. https://doi.org/10.1001/jama.2012.5669 .
doi: 10.1001/jama.2012.5669
Monneret G, Lepape A, Venet F. A dynamic view of mHLA-DR expression in management of severe septic patients. Crit Care. 2011;15:198.
pubmed: 22011628 pmcid: 3334761
Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–8.
pubmed: 23427891 pmcid: 3798159
Landelle C, Lepape A, Voirin N, Tognet E, Venet F, Bohé J, et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med. 2010;36:1859–66.
pubmed: 20652682
Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard A-L, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006;32:1175–83.
pubmed: 16741700
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.
pubmed: 24232462 pmcid: 4077177
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.
pubmed: 20636820 pmcid: 2919275
Monaghan SF, Thakkar RK, Heffernan DS, Huang X, Chung C-S, Lomas-Neira J, et al. Mechanisms of indirect acute lung injury: a novel role for the co-inhibitory receptor, programmed death-1 (PD-1). Ann Surg. 2012;255:158.
pubmed: 21997806 pmcid: 3243770
Brahmamdam P, Inoue S, Unsinger J, Chang KC, McDunn JE, Hotchkiss RS. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J Leukoc Biol. 2010;88:233–40.
pubmed: 20483923 pmcid: 6607999
Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15:R99.
pubmed: 21418617 pmcid: 3219369
Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci. 2009;106:6303–8.
pubmed: 19332785
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605.
pubmed: 22187279 pmcid: 3361243
Nierhaus A, Montag B, Timmler N, Frings DP, Gutensohn K, Jung R, et al. Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 2003;29:646–51.
pubmed: 12595977
Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, et al. GM-CSF to reverse sepsis-associated immunosuppression: a double-blind randomized placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180:640–8.
pubmed: 19590022
Payen D, Faivre V, Miatello J, Leentjens J, Brumpt C, Tissières P, et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis. 2019;19:931.
pubmed: 31690258 pmcid: 6833157
Pfortmueller CA, Meisel C, Fux M, Schefold JC. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers. Intensive Care Med Exp. 2017. https://doi.org/10.1186/s40635-017-0163-0 .
doi: 10.1186/s40635-017-0163-0 pubmed: 29063386 pmcid: 5653680
Venet F, Lukaszewicz A-C, Payen D, Hotchkiss R, Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol. 2013;25:477–83.
pubmed: 23725873 pmcid: 3931134
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14:121–37.
pubmed: 29225343
Gall J-RL, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270:2957–63.
pubmed: 8254858
Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.
pubmed: 18270353
Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.
pubmed: 20843245
Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353:2683–95.
pubmed: 16371634
Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.
pubmed: 23688302
Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–82.
pubmed: 22926653
Bouadma L, Mourvillier B, Deiler V, Le Corre B, Lolom I, Régnier B, et al. A multifaceted program to prevent ventilator-associated pneumonia: impact on compliance with preventive measures. Crit Care Med. 2010;38:789–96.
pubmed: 20068461
Mekontso Dessap A, Katsahian S, Roche-Campo F, Varet H, Kouatchet A, Tomicic V, et al. Ventilator-associated pneumonia during weaning from mechanical ventilation: role of fluid management. Chest. 2014;146:58–65.
pubmed: 24652410
Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al. An Official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185:1004–14.
pubmed: 22550210
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.
pubmed: 8844239
Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.
pubmed: 25693014
Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.
pubmed: 9062352 pmcid: 507902
Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33:1–6 (discussion 230–2).
pubmed: 15644641
Herold S, Hoegner K, Vadász I, Gessler T, Wilhelm J, Mayer K, et al. Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:609–11.
pubmed: 24579839
Skirecki T, Mikaszewska-Sokolewicz M, Hoser G, Zielińska-Borkowska U. The early expression of HLA-DR and CD64 myeloid markers is specifically compartmentalized in the blood and lungs of patients with septic shock. Mediators Inflamm. 2016. https://doi.org/10.1155/2016/3074902 .
doi: 10.1155/2016/3074902 pubmed: 27413252 pmcid: 4930815
Goto Y, Hogg JC, Whalen B, Shih C-H, Ishii H, van Eeden SF. Monocyte recruitment into the lungs in pneumococcal pneumonia. Am J Respir Cell Mol Biol. 2004;30:620–6.
pubmed: 14578212
Zhang Y, Li J, Lou J, Zhou Y, Bo L, Zhu J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15:R70.
pubmed: 21349174 pmcid: 3222003
Morrell ED, Wiedeman A, Long SA, Gharib SA, West TE, Skerrett SJ, et al. Cytometry TOF identifies alveolar macrophage subtypes in acute respiratory distress syndrome. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.99281 .
doi: 10.1172/jci.insight.99281 pubmed: 29769438 pmcid: 6012519
Erickson JJ, Gilchuk P, Hastings AK, Tollefson SJ, Johnson M, Downing MB, et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest. 2012;122:2967–82.
pubmed: 22797302 pmcid: 3408742
Yu Y-RA, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am J Respir Cell Mol Biol. 2016;54:13–24.
pubmed: 26267148 pmcid: 4742930
Brittan M, Barr L, Morris AC, Duffin R, Rossi F, Johnston S, et al. A novel subpopulation of monocyte-like cells in the human lung after lipopolysaccharide inhalation. Eur Respir J. 2012;40:206–14.
pubmed: 22267753
Dargaville PA, South M, Vervaart P, McDougall PN. Validity of markers of dilution in small volume lung lavage. Am J Respir Crit Care Med. 1999;160:778–84.
pubmed: 10471596
Marcy TW, Merrill WW, Rankin JA, Reynolds HY. Limitations of using urea to quantify epithelial lining fluid recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1987;135:1276–80.
pubmed: 3592404

Auteurs

Inès Bendib (I)

Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.
INSERM U955, Equipe 16, 94 000, Créteil, France.

Asma Beldi-Ferchiou (A)

Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.
Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France.

Frédéric Schlemmer (F)

Unité de Pneumologie, Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France.

Mathieu Surenaud (M)

Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.

Bernard Maitre (B)

Unité de Pneumologie, Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France.

Anne Plonquet (A)

Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France.

Guillaume Carteaux (G)

Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.

Keyvan Razazi (K)

Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.

Veronique Godot (V)

INSERM U955, Equipe 16, 94 000, Créteil, France.
Vaccine Research Institute, 94 000, Créteil, France.
Faculté de Médecine, Université Paris Est, 94 000, Créteil, France.

Sophie Hüe (S)

Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.
Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France.

Armand Mekontso Dessap (A)

Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.
INSERM U955, 94 000, Créteil, France.

Nicolas de Prost (N)

Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France. nicolas.de-prost@aphp.fr.
Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France. nicolas.de-prost@aphp.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH