Alveolar compartmentalization of inflammatory and immune cell biomarkers in pneumonia-related ARDS.
Aged
Analysis of Variance
Biomarkers
/ analysis
Bronchoalveolar Lavage
/ methods
Bronchoalveolar Lavage Fluid
/ immunology
Cohort Studies
Female
Flow Cytometry
/ methods
France
Humans
Male
Middle Aged
Pneumonia
/ complications
Prospective Studies
Pulmonary Alveoli
/ drug effects
Respiratory Distress Syndrome
Statistics, Nonparametric
Adult
Cytokines
HLA-DR antigens
PD-1
Pneumonia
Respiratory distress syndrome
Journal
Critical care (London, England)
ISSN: 1466-609X
Titre abrégé: Crit Care
Pays: England
ID NLM: 9801902
Informations de publication
Date de publication:
09 01 2021
09 01 2021
Historique:
received:
22
09
2020
accepted:
07
12
2020
entrez:
10
1
2021
pubmed:
11
1
2021
medline:
6
8
2021
Statut:
epublish
Résumé
Biomarkers of disease severity might help individualizing the management of patients with the acute respiratory distress syndrome (ARDS). Whether the alveolar compartmentalization of biomarkers has a clinical significance in patients with pneumonia-related ARDS is unknown. This study aimed at assessing the interrelation of ARDS/sepsis biomarkers in the alveolar and blood compartments and explored their association with clinical outcomes. Immunocompetent patients with pneumonia-related ARDS admitted between 2014 and 2018 were included in a prospective monocentric study. Bronchoalveolar lavage (BAL) fluid and blood samples were obtained within 48 h of admission. Twenty-two biomarkers were quantified in BAL fluid and serum. HLA-DR Seventy ARDS patients were included. Hospital mortality was 21.4%. The BAL fluid-to-serum ratio of IL-8 was 20 times higher in ARDS patients than in controls (p < 0.0001). ARDS patients with shock had lower BAL fluid-to-serum ratio of IL-1Ra (p = 0.026), IL-6 (p = 0.002), IP-10/CXCL10 (p = 0.024) and IL-10 (p = 0.023) than others. The BAL fluid-to-serum ratio of IL-1Ra was more elevated in hospital survivors than decedents (p = 0.006), even after adjusting for SOFA and driving pressure (p = 0.036). There was no significant association between alveolar or alveolar/blood monocytic HLA-DR or CD8 IL-8 was the most compartmentalized cytokine and lower BAL fluid-to-serum concentration ratios of IL-1Ra were associated with hospital mortality in patients with pneumonia-associated ARDS.
Sections du résumé
BACKGROUND
Biomarkers of disease severity might help individualizing the management of patients with the acute respiratory distress syndrome (ARDS). Whether the alveolar compartmentalization of biomarkers has a clinical significance in patients with pneumonia-related ARDS is unknown. This study aimed at assessing the interrelation of ARDS/sepsis biomarkers in the alveolar and blood compartments and explored their association with clinical outcomes.
METHODS
Immunocompetent patients with pneumonia-related ARDS admitted between 2014 and 2018 were included in a prospective monocentric study. Bronchoalveolar lavage (BAL) fluid and blood samples were obtained within 48 h of admission. Twenty-two biomarkers were quantified in BAL fluid and serum. HLA-DR
RESULTS
Seventy ARDS patients were included. Hospital mortality was 21.4%. The BAL fluid-to-serum ratio of IL-8 was 20 times higher in ARDS patients than in controls (p < 0.0001). ARDS patients with shock had lower BAL fluid-to-serum ratio of IL-1Ra (p = 0.026), IL-6 (p = 0.002), IP-10/CXCL10 (p = 0.024) and IL-10 (p = 0.023) than others. The BAL fluid-to-serum ratio of IL-1Ra was more elevated in hospital survivors than decedents (p = 0.006), even after adjusting for SOFA and driving pressure (p = 0.036). There was no significant association between alveolar or alveolar/blood monocytic HLA-DR or CD8
CONCLUSIONS
IL-8 was the most compartmentalized cytokine and lower BAL fluid-to-serum concentration ratios of IL-1Ra were associated with hospital mortality in patients with pneumonia-associated ARDS.
Identifiants
pubmed: 33422148
doi: 10.1186/s13054-020-03427-y
pii: 10.1186/s13054-020-03427-y
pmc: PMC7794625
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
23Subventions
Organisme : Société de Réanimation de Langue Française (FR)
ID : 2013 Clinical Research Grant
Pays : International
Commentaires et corrections
Type : CommentIn
Références
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788.
pubmed: 26903337
National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.
Perkins GD, McAuley DF, Thickett DR, Gao F. The β-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173:281–7.
pubmed: 16254268
McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695–703.
pubmed: 25268516
Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2010;137:288–96.
pubmed: 19858233
Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.
pubmed: 24853585
pmcid: 4154544
Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–8.
pubmed: 27513822
pmcid: 5328179
García-Laorden MI, Lorente JA, Flores C, Slutsky AS, Villar J. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann Transl Med. 2017;5:283.
pubmed: 28828358
pmcid: 5537109
Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet Lond Engl. 1993;341:643–7.
van der Zee P, Rietdijk W, Somhorst P, Endeman H, Gommers D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit Care Lond Engl. 2020;24:243.
ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012. https://doi.org/10.1001/jama.2012.5669 .
doi: 10.1001/jama.2012.5669
Monneret G, Lepape A, Venet F. A dynamic view of mHLA-DR expression in management of severe septic patients. Crit Care. 2011;15:198.
pubmed: 22011628
pmcid: 3334761
Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–8.
pubmed: 23427891
pmcid: 3798159
Landelle C, Lepape A, Voirin N, Tognet E, Venet F, Bohé J, et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med. 2010;36:1859–66.
pubmed: 20652682
Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard A-L, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006;32:1175–83.
pubmed: 16741700
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.
pubmed: 24232462
pmcid: 4077177
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.
pubmed: 20636820
pmcid: 2919275
Monaghan SF, Thakkar RK, Heffernan DS, Huang X, Chung C-S, Lomas-Neira J, et al. Mechanisms of indirect acute lung injury: a novel role for the co-inhibitory receptor, programmed death-1 (PD-1). Ann Surg. 2012;255:158.
pubmed: 21997806
pmcid: 3243770
Brahmamdam P, Inoue S, Unsinger J, Chang KC, McDunn JE, Hotchkiss RS. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J Leukoc Biol. 2010;88:233–40.
pubmed: 20483923
pmcid: 6607999
Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15:R99.
pubmed: 21418617
pmcid: 3219369
Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci. 2009;106:6303–8.
pubmed: 19332785
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605.
pubmed: 22187279
pmcid: 3361243
Nierhaus A, Montag B, Timmler N, Frings DP, Gutensohn K, Jung R, et al. Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 2003;29:646–51.
pubmed: 12595977
Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, et al. GM-CSF to reverse sepsis-associated immunosuppression: a double-blind randomized placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180:640–8.
pubmed: 19590022
Payen D, Faivre V, Miatello J, Leentjens J, Brumpt C, Tissières P, et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis. 2019;19:931.
pubmed: 31690258
pmcid: 6833157
Pfortmueller CA, Meisel C, Fux M, Schefold JC. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers. Intensive Care Med Exp. 2017. https://doi.org/10.1186/s40635-017-0163-0 .
doi: 10.1186/s40635-017-0163-0
pubmed: 29063386
pmcid: 5653680
Venet F, Lukaszewicz A-C, Payen D, Hotchkiss R, Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol. 2013;25:477–83.
pubmed: 23725873
pmcid: 3931134
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14:121–37.
pubmed: 29225343
Gall J-RL, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270:2957–63.
pubmed: 8254858
Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.
pubmed: 18270353
Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.
pubmed: 20843245
Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353:2683–95.
pubmed: 16371634
Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.
pubmed: 23688302
Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–82.
pubmed: 22926653
Bouadma L, Mourvillier B, Deiler V, Le Corre B, Lolom I, Régnier B, et al. A multifaceted program to prevent ventilator-associated pneumonia: impact on compliance with preventive measures. Crit Care Med. 2010;38:789–96.
pubmed: 20068461
Mekontso Dessap A, Katsahian S, Roche-Campo F, Varet H, Kouatchet A, Tomicic V, et al. Ventilator-associated pneumonia during weaning from mechanical ventilation: role of fluid management. Chest. 2014;146:58–65.
pubmed: 24652410
Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al. An Official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185:1004–14.
pubmed: 22550210
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.
pubmed: 8844239
Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.
pubmed: 25693014
Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.
pubmed: 9062352
pmcid: 507902
Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33:1–6 (discussion 230–2).
pubmed: 15644641
Herold S, Hoegner K, Vadász I, Gessler T, Wilhelm J, Mayer K, et al. Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:609–11.
pubmed: 24579839
Skirecki T, Mikaszewska-Sokolewicz M, Hoser G, Zielińska-Borkowska U. The early expression of HLA-DR and CD64 myeloid markers is specifically compartmentalized in the blood and lungs of patients with septic shock. Mediators Inflamm. 2016. https://doi.org/10.1155/2016/3074902 .
doi: 10.1155/2016/3074902
pubmed: 27413252
pmcid: 4930815
Goto Y, Hogg JC, Whalen B, Shih C-H, Ishii H, van Eeden SF. Monocyte recruitment into the lungs in pneumococcal pneumonia. Am J Respir Cell Mol Biol. 2004;30:620–6.
pubmed: 14578212
Zhang Y, Li J, Lou J, Zhou Y, Bo L, Zhu J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15:R70.
pubmed: 21349174
pmcid: 3222003
Morrell ED, Wiedeman A, Long SA, Gharib SA, West TE, Skerrett SJ, et al. Cytometry TOF identifies alveolar macrophage subtypes in acute respiratory distress syndrome. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.99281 .
doi: 10.1172/jci.insight.99281
pubmed: 29769438
pmcid: 6012519
Erickson JJ, Gilchuk P, Hastings AK, Tollefson SJ, Johnson M, Downing MB, et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest. 2012;122:2967–82.
pubmed: 22797302
pmcid: 3408742
Yu Y-RA, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am J Respir Cell Mol Biol. 2016;54:13–24.
pubmed: 26267148
pmcid: 4742930
Brittan M, Barr L, Morris AC, Duffin R, Rossi F, Johnston S, et al. A novel subpopulation of monocyte-like cells in the human lung after lipopolysaccharide inhalation. Eur Respir J. 2012;40:206–14.
pubmed: 22267753
Dargaville PA, South M, Vervaart P, McDougall PN. Validity of markers of dilution in small volume lung lavage. Am J Respir Crit Care Med. 1999;160:778–84.
pubmed: 10471596
Marcy TW, Merrill WW, Rankin JA, Reynolds HY. Limitations of using urea to quantify epithelial lining fluid recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1987;135:1276–80.
pubmed: 3592404