Significance of fucose in intestinal health and disease.
Bacteroides
Bifidobacteria
Campylobacter
fucose
gastrointestinal tract
microbiome
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
30
12
2020
received:
02
09
2020
accepted:
08
01
2021
pubmed:
13
1
2021
medline:
15
12
2021
entrez:
12
1
2021
Statut:
ppublish
Résumé
The deoxyhexose sugar L-fucose is important for many biological processes within the human body and the associated microbiota. This carbohydrate is abundant in host gut mucosal surfaces, numerous microbial cell surface structures, and some dietary carbohydrates. Fucosylated oligosaccharides facilitate the establishment of a healthy microbiota and provide protection from infection. However, there are instances where pathogens can also exploit these fucosylated structures to cause infection. Furthermore, deficiencies in host fucosylation are associated with specific disease outcomes. This review focuses on our current understanding of the impact of fucosylation within the mucosal environment of the gastrointestinal tract with a specific emphasis on the mediatory effects in host-microbe interactions.
Substances chimiques
Dietary Carbohydrates
0
Fucose
28RYY2IV3F
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1086-1093Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Ale, M.T. and Meyer, A.S. (2013) Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. Royal Society of Chemistry, 3, 8131-8141. https://doi.org/10.1039/C3RA23373A
Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., van't Land, B., Stahl, B., Garssen, J. et al (2018) Supplementation with 2′-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Frontiers in Cellular and Infection Microbiology, 8, 1-17. https://doi.org/10.3389/fcimb.2018.00372
Bian, X., Garber, J.M., Cooper, K.K., Huynh, S., Jones, J., Mills, M.K. et al (2020) Campylobacter abundance in breastfed infants and identification of a new species in the global enterics multicenter study. mSphere, 5, 1-15. https://doi.org/10.1128/mSphere.00735-19
Boren, T., Falk, P., Roth, K., Larson, G. and Normark, S. (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science, 262, 1892-1895. https://doi.org/10.1126/science.8018146
Borewicz, K., Gu, F., Saccenti, E., Arts, I.C.W., Penders, J., Thijs, C. et al (2019) Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Molecular Nutrition & Food Research, 63(13), 1801214. https://doi.org/10.1002/mnfr.201801214
Bry, L., Falk, P.G., Midtvedt, T. and Gordon, J.I. (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science, 273, 1380-1383. https://doi.org/10.1126/science.273.5280.1380
Bunesova, V., Lacroix, C. and Schwab, C. (2016) Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiology, 16, 248. https://doi.org/10.1186/s12866-016-0867-4
Burton, R.A., Gidley, M.J. and Fincher, G.B. (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 6, 724-732.
Cani, P.D. and de Vos, W.M. (2017) Next-generation beneficial microbes: The case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. https://doi.org/10.3389/fmicb.2017.01765
Cartmell, A., Muñoz-Muñoz, J., Briggs, J.A., Ndeh, D.A., Lowe, E.C., Baslé, A. et al (2018) A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 3, 1314-1326.
Colston, J.M., Francois, R., Pisanic, N., Peñataro Yori, P., McCormick, B.J.J., Olortegui, M.P. et al (2019) Effects of child and maternal histo-blood group antigen status on symptomatic and asymptomatic enteric infections in early childhood. Journal of Infectious Diseases, 220, 151-162. https://doi.org/10.1093/infdis/jiz072
Coyne, M.J., Kalka-Moll, W., Tzianabos, A.O., Kasper, D.L. and Comstock, L.E. (2000) Bacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: Cloning, characterization, and reassignment of polysaccharide B and C biosynthesis loci. Infection and Immunity, 68, 6176-6181. https://doi.org/10.1128/IAI.68.11.6176-6181.2000
Coyne, M.J., Reinap, B., Lee, M.M. and Comstock, L.E. (2005) Human symbionts use a host-like pathway for surface fucosylation. Science, 307, 1778-1781. https://doi.org/10.1126/science.1106469
Cuiv, P.O., Klaassens, E.S., Durkin, A.S., Harkins, D.M., Foster, L., McCorrison, J. et al (2011) Draft genome sequence of Bacteroides vulgatus PC510, a strain isolated from human feces. Journal of Bacteriology, 193, 4025-4026. https://doi.org/10.1128/JB.05256-11
Currier, R.L., Payne, D.C., Staat, M.A., Selvarangan, R., Shirley, S.H., Halasa, N. et al (2015) Innate susceptibility to norovirus infections influenced by FUT2 genotype in a United States pediatric population. Clinical Infectious Diseases, 60, 1631-1638.
Davis, J.C.C., Totten, S.M., Huang, J.O., Nagshbandi, S., Kirmiz, N., Garrido, D.A. et al (2016) Identification of oligosaccharides in feces of breast-fed infants and their correlation with the gut microbial community. Molecular & Cellular Proteomics, 15, 2987-3002. https://doi.org/10.1074/mcp.m116.060665
Dwivedi, R., Nothaft, H., Garber, J., Xin Kin, L., Stahl, M., Flint, A. et al (2016) L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Molecular Microbiology, 101, 575-589.
Elhenawy, W., Debelyy, M.O. and Feldman, M.F. (2014) Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. MBio, 5, 1-12. https://doi.org/10.1128/mBio.00909-14
Garber, J.M., Nothaft, H., Pluvinage, B., Stahl, M., Bian, X., Porfirio, S. et al (2020) The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Communications Biology, 3, 1-11. https://doi.org/10.1038/s42003-019-0727-5
Goto, Y., Obata, T., Kunisawa, J., Sato, S., Ivanov, I.i, Lamichhane, A., Takeyama, N., Kamioka, M., Sakamoto, M., Matsuki, T., Setoyama, H., Imaoka, A., Uematsu, S., Akira, S., Domino, S.e, Kulig, P., Becher, B., Renauld, J-c, Sasakawa, C., … Kiyono, H. (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 345, 1310-1323. https://doi.org/10.1126/science.1254009
Grabinger, T., Garzon, J.F.G., Hausmann, M., Geirnaesrt, A., Lacroix, C. and Hennet, T. (2019) Alleviation of intestinal inflammation by oral supplementation with 2-fucosyllactose in mice. Frontiers in Microbiology, 10, 1385. https://doi.org/10.3389/fmicb.2019.01385
Green, F.R., Greenwell, P., Dickson, L., Griffiths, B., Noades, J., Swallow, D.M. et al (1988) Expression of the ABH, Lewis, and related antigens on the glycoproteins of the human jejunal brush border. In: Harris, J.R. (Ed.) Immunological Aspects. Subcellular Biochemistry. Vol. 12. Boston, MA: Springer, pp. 119-153.
Haga, K., Ettayebi, K., Tenge, V.R., Karandikar, U.C., Lewis, M.A., Lin, S.-C. et al (2020) Genetic manipulation of human intestinal enteroids demonstrates the necessity of a functional fucosyltransferase 2 gene for secretor-dependent human norovirus infection. Mbio, 11, e00251-20. https://doi.org/10.1128/mBio.00251-20
Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T. and Gordon, J.I. (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proceedings of the National Academy of Sciences, 96, 9833-9838.
Hu, S., Wang, J., Wang, J., Yang, H., Yan, X. and Su, L. (2019) Fucoidan from Acaudina molpadioides improves insulin resistance by altering gut microbiota dysfunction. Journal of Functional Foods, 57, 59-67. https://doi.org/10.1016/j.jff.2019.03.033
Huang, P., Farkas, T., Zhong, W., Tan, M., Thornton, S., Morrow, A.L. et al (2005) Norovirus and histo-blood group antigens: Demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. Journal of Virology, 79, 6714-6722. https://doi.org/10.1128/JVI.79.11.6714-6722.2005
Ishijima, N., Suzuki, M., Ashida, H., Ichikawa, Y., Kanegae, Y., Saito, I. et al (2011) BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. Journal of Biological Chemistry, 286, 25256-25264.
Kashyap, P.C., Marcobal, A., Ursell, L.K., Smits, S.A., Sonnenburg, E.D., Costello, E.K. et al (2013) Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. PNAS, 110, 17059-17064. https://doi.org/10.1073/pnas.1306070110
Komura, D.L., Carbonero, E.R., Gracher, A.H.P., Baggio, C.H., Freitas, C.S., Marcon, R. et al (2010) Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresource Technology, 101, 6192-6199.
Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry, 54, 631-664. https://doi.org/10.1146/annurev.bi.54.070185.003215
Koropatkin, N.M., Cameron, E.A. and Martens, E.C. (2012) How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 10, 323-335.
Kostopoulos, I., Elzinga, J., Ottman, N., Klievink, J.T., Blijenberg, B., Aalvink, S. et al (2020) Akkermansia muciniphila uses human milk oligosaccharides to thrive in early life condtions in vitro. Scientific Reports, 10, 14330.
Laucirica, D.R., Triantis, V., Schoemaker, R., Estes, M.K.andRamani, S. Milk oligosaccharides inhibit human rotavirus infectivity in MA104 cells. Journal of Nutrition, 147(9), 1709-1714.
Liu, T.W., Ho, C.W., Huang, H.H., Chang, S.M., Popat, S.D., Wang, Y.T. et al (2009) Role for α-L-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proceedings of the National Academy of Sciences, 106, 14581-14586.
Lübke, T., Marquardt, T., Etzioni, A., Hartmann, E., von Figura, K. and Körner, C. (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nature Genetics, 28, 73-76.
MacKenzie, C.R., Hirama, T., Lee, K.K., Altman, E. and Young, N.M. (1997) Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. Journal of Biological Chemistry, 272, 5533-5538.
Mallagaray, A., Rademacher, C., Parra, F., Hansman, G. and Peters, T. (2017) Saturation transfer difference nuclear magnetic resonance titrations reveal complex multistepbinding of L-fucose to norovirus particles. Glycobiology, 27, 80-86. https://doi.org/10.1093/glycob/cww070
Marionneau, S., Cailleau-Thomas, A., Rocher, J., Le Moullac-Vaidye, B., Ruvoën, N., Clément, M. and et al (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie, 83, 565-573. https://doi.org/10.1016/S0300-9084(01)01321-9
Maroni, L., van de Graaf, S.F.J., Hohenester, S.D., Oude Elferink, R.P.J. and Beuers, U. (2015) Fucosyltransferase 2: A genetic risk factor for primary sclerosing cholangitis and Crohn’s disease-A comprehensive review. Clinical Reviews in Allergy and Immunology, 48, 182-191. https://doi.org/10.1007/s12016-014-8423-1
Martin, L.Y., Prindle, T., Nino, D.F., Zhou, Q., Ma, C., Ozolek, J.A. et al (2016) The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. British Journal of Nutrition, 116, 1175-1187. https://doi.org/10.1017/S0007114516002944
Matsuki, T., Yahagi, K., Mori, H., Matsumoto, H., Hara, T., Tajima, S. et al (2015) A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nature Communications, 7, 11939. https://doi.org/10.1038/ncomms11939
McGovern, D.P.B., Jones, M.R., Taylor, K.D., Marciante, K., Yan, X., Dubinsky, M. et al (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Human Molecular Genetics, 19, 3468-3476.
Milani, C., Andrea Lugli, G., Duranti, S., Turroni, F., Mancabelli, L., Ferrario, C. et al (2015) Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Scientific Reports, 5, 1-14.
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J. et al (2017) The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81, 1-67. https://doi.org/10.1128/MMBR.00036-17
Ndeh, D., Rogowski, A., Cartmell, A., Luis, A.S., Baslé, A., Gray, J. et al (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 544, 65-70. https://doi.org/10.1038/nature21725
Neelamegham, S., Aoki-Kinoshita, K., Bolton, E., Frank, M., Lisacek, F., Lütteke, T. et al (2019) The SNFG discussion group, updates to the symbol nomenclature for glycans guidelines. Glycobiology, 29(9), 620-624. https://doi.org/10.1093/glycob/cwz045
Newburg, D.S. and Grave, G. (2014) Recent advances in human milk glycobiology. Pediatric Research, 75, 675-679.
Ng, K.M., Ferreyra, J.A., Higginbottom, S.K., Lynch, J.B., Kashyap, P.C., Gopinath, S. et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 502, 96-99. https://doi.org/10.1038/nature12503
Omata, Y., Aoki, R., Aoki-Yoshida, A., Hiemori, K., Toyoda, A., Tateno, H. et al (2018) Reduced fucosylation in the distal intestinal epithelium of mice subjected to chronic social defeat stress. Scientific Reports, 8, 1-8. https://doi.org/10.1038/s41598-018-31403-8
Ottman, N., Davids, M., Suarez-Diez, M., Boeren, S., Schaap, P.J., Martins dos Santos, V.A.P. et al (2017) Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Applied and Environmental Microbiology, 83, e01014-17. https://doi.org/10.1128/AEM.01014-17
Pacheco, A.R., Curtis, M.M., Ritchie, J.M., Munera, D., Waldor, M.K., Moreira, C.G. and et al (2012) Fucose sensing regulates bacterial intestinal colonization. Nature, 492, 113-117. https://doi.org/10.1038/nature11623
Patry, R.T., Stahl, M., Perez-Munoz, M.E., Nothaft, H., Wenzel, C.Q., Sacher, J.C. et al (2019) Bacterial AB5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nature Communications, 10, 1-13.
Pham, T.A.N., Clare, S., Goulding, D., Arasteh, J.M., Stares, M.D., Browne, H.P. et al (2014) Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host & Microbe, 16, 504-516. https://doi.org/10.1016/j.chom.2014.08.017
Pickard, J.M. and Chervonsky, A.V. (2015) Intestinal fucose as a mediator of host-microbe symbiosis. The Journal of Immunology, 194, 5588-5593. https://doi.org/10.4049/jimmunol.1500395
Pickard, J.M., Maurice, C.F., Kinnebrew, M.A., Abt, M.C., Schenten, D., Golovkina, T.V. et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature, 514, 638-641. https://doi.org/10.1038/nature13823
Ramani, S., Stewart, C.J., Laucirica, D.R., Ajami, N.J., Robertson, B., Autran, C.A. et al (2018) Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nature Communications, 9, 5010.
Robilotti, E., Deresinski, S. and Pinsky, B.A. (2015) Norovirus. Clinical Microbiology Reviews, 28, 134-164.
Rockx, B.H.G., Vennema, H., Hoebe, C.J.P.A., Duizer, E. and Koopmans, M.P.G. (2005) Association of histo-blood group antigens and susceptibility to norovirus infections. Journal of Infectious Diseases, 191, 749-754.
Royle, L., Roos, A., Harvey, D.J., Wormald, M.R., Van Gijlswijk-Janssen, D., Redwan, E.R.M. et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. Journal of Biological Chemistry, 278, 20140-20153.
Ruthes, A.C., Rattmann, Y.D., Malquevicz-Paiva, S.M., Carbonero, E.R., Córdova, M.M., Baggio, C.H. et al (2013) Agaricus bisporus fucogalactan: Structural characterization and pharmacological approaches. Carbohydrate Polymers, 92, 184-191. https://doi.org/10.1016/j.carbpol.2012.08.071
Schneider, M., Al-Shareffi, E. and Haltiwanger, R.S. (2017) Biological functions of fucose in mammals. Glycobiol, 27, 601-618. https://doi.org/10.1093/glycob/cwx034
Shang, Q., Song, G., Zhang, M., Shi, J., Xu, C., Hao, J. et al (2017) Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. Journal of Functional Foods, 28, 138-146. https://doi.org/10.1016/j.jff.2016.11.002
Sichert, A., Le Gall, S., Klau, L.J., Laillet, B., Rogniaux, H., Aachmann, F.L. et al (2020) Ion-exchange purification and structural characterization of five sulfated fucoidans from brown algae. Glycobiology. cwaa064. 1-6.
Smiderle, F.R., Ruthes, A.C., van Arkel, J., Chanput, W., Iacomini, M., Wichers, H.J. and et al (2011) Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complementary and Alternative Medicine, 11, 1-10. https://doi.org/10.1186/1472-6882-11-58
Stahl, M., Friis, L.M., Nothaft, H., Liu, X., Li, J., Szymanski, C.M. and et al (2011) L-Fucose utilization provides Campylobacter jejuni with a competitive advantage. Proceedings of the National Academy of Sciences, 108, 7194-7199.
Stentz, R., Carvalho, A.L., Jones, E.J. and Carding, S.R. (2018) Fantastic voyage: The journey of intestinal microbiota-derived microvesicles through the body. Biochemical Society Transactions, 46, 1021-1027. https://doi.org/10.1042/BST20180114
Suwandi, A., Galeev, A., Riedel, R., Sharma, S., Seeger, K., Sterzenbach, T. et al (2019) Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Path, 15, e1007915. https://doi.org/10.1371/journal.ppat.1007915
Tailford, L.E., Crost, E.H., Kavanaugh, D. and Juge, N. (2015) Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics, 5, 81. https://doi.org/10.3389/fgene.2015.00081
Taubenschmid, J., Stadlmann, J., Jost, M., Klokk, T.I., Rillahan, C.D., Leibbrandt, A. et al (2017) A vital sugar code for ricin toxicity. Cell Research, 27, 1351-1364. https://doi.org/10.1038/cr.2017.116
Turroni, F., Milani, C., Duranti, S., Mahony, J., van Sinderen, D. and Ventura, M. (2018) Glycan utilization and cross-feeding activities by Bifidobacteria. Trends in Microbiology, 26, 339-350. https://doi.org/10.1016/j.tim.2017.10.001
Umesaki, Y. and Ohara, M. (1989) Factors regulating the expression of the neutral glycolipids in the mouse small intestinal mucosa. Biochimica Et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1001, 163-168. https://doi.org/10.1016/0005-2760(89)90143-4
Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. and Setoyama, H. (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiology and Immunology, 39, 555-562. https://doi.org/10.1111/j.1348-0421.1995.tb02242.x
Umesaki, Y., Tohyama, K. and Mutai, M. (1981) Appearance of fucolipid after conventionalization of germ-free mice. Journal of Biochemistry, 90, 559-561. https://doi.org/10.1093/oxfordjournals.jbchem.a133506
Wands, A.M., Cervin, J., Huang, H., Zhang, Y., Youn, G., Brautigam, C.A. et al (2018) Fucosylated molecules competitively interfere with cholera toxin binding to host cells. ACS Infectious Diseases, 4, 758-770.
Wang, Z., Neupane, A., Vo, R., White, J., Wang, X. and Marzano, S.-Y.-L. (2020a) Comparing gut microbiome in mothers’ own breast milk- and formula-fed moderate-late preterm infants. Frontiers in Microbiology, 11, 1-13. https://doi.org/10.3389/fmicb.2020.00891
Wang, L., Ai, C., Wen, C., Qin, Y., Lieu, Z.Wang L. et al (2020b) Fucoidan isolated from Ascophyllum nodosum alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice. Food & Function, 11, 5595-5606.
Weiss, G.A., Chassard, C. and Hennet, T. (2014) Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice. British Journal of Nutrition, 111, 1602-1610.
Westreich, S.T., Ardeshir, A., Alkan, Z., Kable, M.E., Korf, I. and Lemay, D.G. (2019) Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome, 7, 41. https://doi.org/10.1186/s40168-019-0664-z
Wiese, M., Khakimov, B., Nielsen, S., Sørensen, H., van den Berg, F. and Nielsen, D.S. (2018) CoMiniGut-A small volume in vitro colon model for the screening of gut microbial fermentation processes. PeerJ, 6, e4268. https://doi.org/10.7717/peerj.4268
Xu, J., Bjursell, M.K., Himrod, J., Deng, S., Carmichael, L.K., Chiang, H.C. et al (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 299, 2074-2076. https://doi.org/10.1126/science.1080029
You, J., Lin, S. and Jiang, T. (2019) Origins and evolution of the α-L-fucosidases: From bacteria to metazoans. Frontiers in Microbiology, 10, 1-9. https://doi.org/10.3389/fmicb.2019.01756
Yu, Z.T., Chen, C. and Newburg, D.S. (2013) Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiol, 23, 1281-1292. https://doi.org/10.1093/glycob/cwt065