Biallelic truncating variants in MAPKAPK5 cause a new developmental disorder involving neurological, cardiac, and facial anomalies combined with synpolydactyly.
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
20
08
2020
accepted:
20
11
2020
revised:
19
11
2020
pubmed:
15
1
2021
medline:
4
6
2021
entrez:
14
1
2021
Statut:
ppublish
Résumé
This study aimed to identify the genetic cause of a new multiple congenital anomalies syndrome observed in three individuals from two unrelated families. Clinical assessment was conducted prenatally and at different postnatal stages. Genetic studies included exome sequencing (ES) combined with single-nucleotide polymorphism (SNP) array based homozygosity mapping and trio ES. Dermal fibroblasts were used for functional assays. A clinically recognizable syndrome characterized by severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet was identified. Additional features included eye abnormalities, hearing impairment, and electroencephalogram anomalies. ES detected different homozygous truncating variants in MAPKAPK5 in both families. Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization. Our data indicate that loss-of-function variants in MAPKAPK5 result in a severe developmental disorder and reveal a major role of this gene in human brain, heart, and limb development.
Identifiants
pubmed: 33442026
doi: 10.1038/s41436-020-01052-2
pii: S1098-3600(21)02463-1
doi:
Substances chimiques
Intracellular Signaling Peptides and Proteins
0
MAP-kinase-activated kinase 5
6YHG2VE3IX
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
679-688Références
Plotnikov, A., Zehorai, E., Procaccia, S. & Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 1813, 1619–1633 (2011).
doi: 10.1016/j.bbamcr.2010.12.012
Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50–83 (2011).
doi: 10.1128/MMBR.00031-10
Ni, H., Wang, X. S., Diener, K. & Yao, Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem. Biophys. Res. Commun. 243, 492–496 (1998).
doi: 10.1006/bbrc.1998.8135
Seternes, O. M. et al. Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol. Cell. Biol. 22, 6931–6945 (2002).
doi: 10.1128/MCB.22.20.6931-6945.2002
New, L., Jiang, Y. & Han, J. Regulation of PRAK subcellular location by p38 MAP kinases. Mol. Biol. Cell. 14, 2603–2616 (2003).
doi: 10.1091/mbc.e02-08-0538
New, L. et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384 (1998).
doi: 10.1093/emboj/17.12.3372
Aberg, E. et al. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J. Biol. Chem. 281, 35499–35510 (2006).
doi: 10.1074/jbc.M606225200
Kant, S. et al. Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J. Biol. Chem. 281, 35511–35519 (2006).
doi: 10.1074/jbc.M606693200
Schumacher, S. et al. Scaffolding by ERK3 regulates MK5 in development. EMBO J. 23, 4770–4779 (2004).
doi: 10.1038/sj.emboj.7600467
Seternes, O. M. et al. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 23, 4780–4791 (2004).
doi: 10.1038/sj.emboj.7600489
Deleris, P. et al. Activation loop phosphorylation of ERK3/ERK4 by group I p21-activated kinases (PAKs) defines a novel PAK-ERK3/4-MAPK-activated protein kinase 5 signaling pathway. J. Biol. Chem. 286, 6470–6478 (2011).
doi: 10.1074/jbc.M110.181529
Estan, M. C. et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat. Commun. 10, 797 (2019).
doi: 10.1038/s41467-019-08548-9
Holtgrewe, M., et al. VarFish: comprehensive DNA variant analysis for diagnostics and research. Nucl. Acids Res. https://doi.org/10.1093/nar/gkaa241 (2020).
Ehmke, N. et al. Biallelic variants in KYNU cause a multisystemic syndrome with hand hyperphalangism. Bone. 133, 115219 (2020).
doi: 10.1016/j.bone.2019.115219
Kosmas, K. et al. CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds. Eur. J. Cell. Biol. 94, 32–45 (2015).
doi: 10.1016/j.ejcb.2014.10.004
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7
Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).
doi: 10.1016/S0968-0004(98)01208-0
Ronkina, N. et al. Comparative analysis of two gene-targeting approaches challenges the tumor-suppressive role of the protein kinase MK5/PRAK. PLoS One 10, e0136138 (2015).
doi: 10.1371/journal.pone.0136138
Tak, H. et al. 14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. Cell. Signal. 19, 2379–2387 (2007).
doi: 10.1016/j.cellsig.2007.07.016
Shi, Y. et al. Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Mol. Cell. Biol. 23, 7732–7741 (2003).
doi: 10.1128/MCB.23.21.7732-7741.2003
Sun, P. et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 128, 295–308 (2007).
doi: 10.1016/j.cell.2006.11.050
Brand, F. et al. The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol. Cell. Biol. 32, 2467–2478 (2012).
doi: 10.1128/MCB.06633-11
Svitkina, T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 10, a018267 (2018).
Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron. 20, 847–854 (1998).
doi: 10.1016/S0896-6273(00)80467-5
Nawaito, S. A. et al. MK5 haplodeficiency attenuates hypertrophy and preserves diastolic function during remodeling induced by chronic pressure overload in the mouse heart. Am. J. Physiol. Heart Circ. Physiol. 313, H46–H58 (2017).
doi: 10.1152/ajpheart.00597.2016
Nawaito, S. A. et al. MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. Am. J. Physiol. Heart Circ. Physiol. 316, H1281–H1296 (2019).
doi: 10.1152/ajpheart.00532.2017
Chen, G., Hitomi, M., Han, J. & Stacey, D. W. The p38 pathway provides negative feedback for Ras proliferative signaling. J. Biol. Chem. 275, 38973–38980 (2000).
doi: 10.1074/jbc.M002856200
Yoshizuka, N. et al. PRAK suppresses oncogenic ras-induced hematopoietic cancer development by antagonizing the JNK pathway. Mol. Cancer Res. 10, 810–820 (2012).
doi: 10.1158/1541-7786.MCR-11-0576
Tajan, M., Paccoud, R., Branka, S., Edouard, T. & Yart, A. The RASopathy family: consequences of germline activation of the RAS/MAPK pathway. Endocr. Rev. 39, 676–700 (2018).
doi: 10.1210/er.2017-00232
Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).
doi: 10.1002/humu.22844
Moens, U. & Kostenko, S. Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases. Biol. Chem. 394, 1115–1132 (2013).
doi: 10.1515/hsz-2013-0149