Merging Pd
Michael addition
allylation
cooperative catalysis
metallacycles
palladium
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
12 Mar 2021
12 Mar 2021
Historique:
received:
08
01
2021
pubmed:
15
1
2021
medline:
15
1
2021
entrez:
14
1
2021
Statut:
ppublish
Résumé
An allylarylation of electron-deficient alkenes with aryl boronates and allylic carbonates has been developed. This method allows access to a wide variety of carbon skeletons from readily available starting materials. Mechanistic studies indicate that this reaction is enabled by a cooperative catalysis based on merging Pd
Identifiants
pubmed: 33442926
doi: 10.1002/chem.202100075
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5035-5040Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP18K14213
Organisme : Japan Society for the Promotion of Science
ID : JP17KT0098
Organisme : Japan Society for the Promotion of Science
ID : JP20H04814
Organisme : Japan Science and Technology Agency
ID : JPMJCR14L3
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
A. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012, 3, 633-658;
Cooperative Catalysis: Designing Efficient Catalysts for Synthesis (Ed.: R. Peters), Wiley-VCH: Weinheim, 2015;
Science of Synthesis: Dual Catalysis in Organic Synthesis 1, (Ed.: G. A. Molander), Thieme, Stuttgart, 2019.
For selected references on cooperative transition-metal catalysis see the following entries. For Pd/Cu catalysis, see:
K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467-4470;
L. S. Liebeskind, R. W. Fengl, J. Org. Chem. 1990, 55, 5359-5364;
L. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662-664;
J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen, M. M. Faul, J. Am. Chem. Soc. 2010, 132, 3674-3675;
F. Nahra, Y. Macé, D. Lambin, O. Riant, Angew. Chem. Int. Ed. 2013, 52, 3208-3212;
Angew. Chem. 2013, 125, 3290-3294;
K. Semba, Y. Nakao, J. Am. Chem. Soc. 2014, 136, 7567-7570;
K. B. Smith, K. M. Logan, W. You, M. K. Brown, Chem. Eur. J. 2014, 20, 12032-12036;
K. Semba, K. Ariyama, H. Zheng, R. Kameyama, S. Sakaki, Y. Nakao, Angew. Chem. Int. Ed. 2016, 55, 6275-6279;
Angew. Chem. 2016, 128, 6383-6387;
S. D. Friis, M. T. Pirnot, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 8372-8375; For Pd/Rh catalysis:
M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc. 1996, 118, 3309-3310; For Pd/Ru catalysis:
S. Ko, B. Kang, S. Chang, Angew. Chem. Int. Ed. 2005, 44, 455-457;
Angew. Chem. 2005, 117, 459-461; For Pd/Au catalysis, see:
Y. Shi, K. E. Roth, S. D. Ramgren, S. A. Blum, J. Am. Chem. Soc. 2009, 131, 18022-18023; For Ni/photoredox catalysis:
Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437-440;
J. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433-436; For Pd/Pd catalysis, see:
Y. Tan, F. Barrios-Landeros, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 3683-3686;
J. Kim, S. H. Hong, ACS Catal. 2017, 7, 3336-3343;
D. Wang, Y. Izawa, S. S. Stahl, J. Am. Chem. Soc. 2014, 136, 9914-9917;
B. A. Martek, M. Gazvoda, D. Urankar, J. Kosmrlj, Org. Lett. 2020, 22, 4938-4943; For Pd V−1 catalysis:
B. M. Trost, X. Luan, Y. Miller, J. Am. Chem. Soc. 2011, 133, 12824-12833; For Pd/Ni catalysis, see:
L. K. G. Ackerman, M. M. Lovell, D. J. Weix, Nature 2015, 524, 454-457; For Ni/Co catalysis, see:
L. K. G. Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci. 2015, 6, 1115-1119;
S. A. Green, J. L. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 12779-12782; For Ni/Fe catalysis, see:
S. A. Green, S. Vásquez-Céspedes, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 11317-11324; For Ni/Mn catalysis, see:
S. A. Green, T. R. Huffman, R. O. McCourt, V. Puyl, R. A. Shenvi, J. Am. Chem. Soc. 2019, 141, 7709-7714.
For reviews and pioneering studies on ligand-mixing strategies, see:
M. T. Reetz, Angew. Chem. Int. Ed. 2008, 47, 2556-2588;
Angew. Chem. 2008, 120, 2592-2626;
Y. Fan, M. Cong, L. Peng, Chem. Eur. J. 2014, 20, 2698-2702;
M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem. Int. Ed. 2003, 42, 790-793;
Angew. Chem. 2003, 115, 814-817;
A. Duursma, R. Hoen, J. Schuppan, R. Hulst, A. J. Minnaard, B. L. Feringa, Org. Lett. 2003, 5, 3111-3113.
B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 15914-15917;
C. Guo, D. Janssen-Müller, M. Fleige, A. Lerchen, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2017, 139, 4443-4451.
For reviews on transition-metal catalysed 1,4-additions, see:
T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829-2844;
A. R. Burns, H. W. Lam, Enantioselective, Rhodium-Catalyzed 1,4-Addition of Organoboron Reagents to Electron-Deficient Alkenes, Organic Reactions (Ed.: S. E. Denmark), John Wiley & Sons, Inc.: Hoboken, 2017, Vol. 93, Chapter 1.
M. J. Chapdelaine, M. Hulce, Tandem Vicinal Difunctionalization: β-Addition to α,β-Unsaturated Carbonyl Substrates Followed by α-Functionalization, Organic Reactions, Vol. 38 (Ed.: L. A. Paquette), John Wiley & Sons, Inc.: Hoboken, 1990, Chapter 2;
H. C. Guo, J. A. Ma, Angew. Chem. Int. Ed. 2006, 45, 354-366;
Angew. Chem. 2006, 118, 362-375;
A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796-2823;
T. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc. Rev. 2009, 38, 1039-1075.
D. F. Cauble, J. D. Gipson, M. J. Krische, J. Am. Chem. Soc. 2003, 125, 1110-1111;
B. M. Bocknack, L. C. Wang, M. J. Krische, Proc. Natl. Acad. Sci. USA 2004, 101, 5421-5424.
For examples of the dicarbofunctionalization of electron-deficient alkenes using nucleophiles other than organoboronic acids and their derivatives, see the following examples. For examples with organozinc, see;
T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801-805; For examples that proceed under reductive conditions, see;
A. García-Domínguez, Z. Li, C. Nevado, J. Am. Chem. Soc. 2017, 139, 6835-6838.
H. Nakamura, K. Shimizu, Tetrahedron Lett. 2011, 52, 426-429;
K. Semba, N. Ohta, Y. Nakao, Org. Lett. 2019, 21, 4407-4410.
K. Yoshida, M. Ogasawara, T. Hayashi, J. Am. Chem. Soc. 2002, 124, 10984-10985;
K. Yoshida, M. Ogasawara, T. Hayashi, J. Org. Chem. 2003, 68, 1901-1905.
For seminal work on cooperative Pd/Pd catalysis, see refs. [2o-q].
R. B. Bedford, H. Dumycz, M. F. Haddow, L. T. Pilarski, A. G. Orpen, P. G. Pringle, R. L. Wingad, J. Chem. Soc. Dalton Trans. 2009, 7796-7804;
Y. Suzuma, T. Yamamoto, T. Ohta, Y. Ito, Chem. Lett. 2007, 36, 470-471.
For a reference on the preparation of 7 a, see:
W. H. Henderson, J. M. Alvarez, C. C. Eichman, J. P. Stambuli, Organometallics 2011, 30, 5038-5044; For references on the use of 7 a as a catalyst, see:
S. Duric, F. D. Sypaseuth, S. Hoof, E. Svensson, C. C. Tzschucke, Chem. Eur. J. 2013, 19, 17456-17463;
See also ref. [2o].
7 b was prepared according to ref. [13a]. It was easier to isolate 8 a from the crude mixture when 7 b was employed instead of 7 a.
For example, 4-phenylbutan-2-one affords a mixture of enol silyl ethers when Me3SiCl and NEt3 in DMF are used (internal:terminal=86:14). For details, see the following references:
H. J. Reich, R. C. Holtan, S. L. Borkowsky, J. Org. Chem. 1987, 52, 312-314;
H. O. House, L. J. Czuba, M. Gall, H. D. Olmstead, J. Org. Chem. 1969, 34, 2324-2336.
For details, see the Supporting Information.
X. Wang, Z. Han, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2012, 51, 936-940;
Angew. Chem. 2012, 124, 960-964.