Human milk oligosaccharides, infant growth, and adiposity over the first 4 months of lactation.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
09 2021
Historique:
received: 17 07 2020
accepted: 01 12 2020
revised: 24 11 2020
pubmed: 16 1 2021
medline: 18 3 2022
entrez: 15 1 2021
Statut: ppublish

Résumé

The relationship between human milk oligosaccharides (HMOs) and infant growth and adiposity is not fully understood and comprehensive studies are missing from the current literature. We screened and recruited 370 healthy, pregnant women and their infants from seven European countries. Breastmilk samples were collected using standardized procedures at six time points over 4 months, as were infant parameters. Correlations and associations between HMO area under the curve, anthropometric data, and fat mass at 4 months were tested. Lacto-N-neotetraose had a negative correlation with the change in length (rs = -0.18, P = 0.02). Sialyllacto-N-tetraose c (LSTc) had a positive correlation with weight for length (rs = 0.19, P = 0.015). Infants at the 25th upper percentile were fed milk higher in 3'-sialyllactose and LSTc (P = 0.017 and P = 0.006, respectively) compared to the lower 25th percentile of the weight-for-length z-score gain over 4 months of lactation. No significant associations between growth and body composition and Lewis or secretor-dependent HMOs like 2'-fucosyllactose were identified. Changes in the HMO composition of breastmilk during the first 4 months appear to have little influence on infant growth and body composition in this cohort of healthy mothers and infants. Modest associations exist between individual HMO and infant growth outcomes at least in healthy growing populations. Our study provides a comprehensive investigation of associations between all major HMO and infant growth and adiposity including several time points. Certain groups of HMOs, like the sialylated, may be associated with adiposity during the first months of lactation. HMO may modulate the risk of future metabolic disease. Future population studies need to address the role of specific groups of HMOs in the context of health and disease to understand the long-term impact.

Sections du résumé

BACKGROUND
The relationship between human milk oligosaccharides (HMOs) and infant growth and adiposity is not fully understood and comprehensive studies are missing from the current literature.
METHODS
We screened and recruited 370 healthy, pregnant women and their infants from seven European countries. Breastmilk samples were collected using standardized procedures at six time points over 4 months, as were infant parameters. Correlations and associations between HMO area under the curve, anthropometric data, and fat mass at 4 months were tested.
RESULTS
Lacto-N-neotetraose had a negative correlation with the change in length (rs = -0.18, P = 0.02). Sialyllacto-N-tetraose c (LSTc) had a positive correlation with weight for length (rs = 0.19, P = 0.015). Infants at the 25th upper percentile were fed milk higher in 3'-sialyllactose and LSTc (P = 0.017 and P = 0.006, respectively) compared to the lower 25th percentile of the weight-for-length z-score gain over 4 months of lactation. No significant associations between growth and body composition and Lewis or secretor-dependent HMOs like 2'-fucosyllactose were identified.
CONCLUSIONS
Changes in the HMO composition of breastmilk during the first 4 months appear to have little influence on infant growth and body composition in this cohort of healthy mothers and infants.
IMPACT
Modest associations exist between individual HMO and infant growth outcomes at least in healthy growing populations. Our study provides a comprehensive investigation of associations between all major HMO and infant growth and adiposity including several time points. Certain groups of HMOs, like the sialylated, may be associated with adiposity during the first months of lactation. HMO may modulate the risk of future metabolic disease. Future population studies need to address the role of specific groups of HMOs in the context of health and disease to understand the long-term impact.

Identifiants

pubmed: 33446921
doi: 10.1038/s41390-020-01328-y
pii: 10.1038/s41390-020-01328-y
doi:

Substances chimiques

Oligosaccharides 0

Banques de données

ClinicalTrials.gov
['NCT01894893']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

684-693

Informations de copyright

© 2021. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.

Références

Ballard, O. & Morrow, A. L. Human milk composition: nutrients and bioactive factors. Pediatr. Clin. N. Am. 60, 49–74 (2013).
doi: 10.1016/j.pcl.2012.10.002
Andreas, N. J., Kampmann, B., Mehring & Le-Doare, K. Human breast milk: a review on its composition and bioactivity. Early Hum. Dev. 91, 629–635 (2015).
pubmed: 26375355 doi: 10.1016/j.earlhumdev.2015.08.013
Kunz, C., Rodriguez-Palmero, M., Koletzko, B. & Jensen, R. Nutritional and biochemical properties of human milk, Part I: general aspects, proteins, and carbohydrates. Clin. Perinatol. 26, 307–333 (1999).
pubmed: 10394490 doi: 10.1016/S0095-5108(18)30055-1
Coppa, G. V. et al. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637–641 (1993).
pubmed: 8441573
Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).
pubmed: 22513036 pmcid: 3406618 doi: 10.1093/glycob/cws074
Kunz, C., Rudloff, S., Baier, W., Klein, N. & Strobel, S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699–722 (2000).
pubmed: 10940350 doi: 10.1146/annurev.nutr.20.1.699
Kunz, C. et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J. Pediatr. Gastroenterol. Nutr. 64, 789–798 (2017).
pubmed: 27602704 doi: 10.1097/MPG.0000000000001402
Sprenger, N., Binia, A. & Austin, S. Human milk oligosaccharides: factors affecting their composition and their physiological significance. Nestle Nutr. Inst. Workshop Ser. 90, 43–56 (2019).
pubmed: 30865976 doi: 10.1159/000490292
Van Niekerk, E. et al. Human milk oligosaccharides differ between HIV-infected and HIV-uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J. Nutr. 144, 1227–1233 (2014).
pubmed: 24919691 doi: 10.3945/jn.113.187799
Smilowitz, J. T., Lebrilla, C. B., Mills, D. A., German, J. B. & Freeman, S. L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 34, 143–169 (2014).
pubmed: 24850388 pmcid: 4348064 doi: 10.1146/annurev-nutr-071813-105721
Thurl, S., Henker, J., Siegel, M., Tovar, K. & Sawatzki, G. Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 14, 795–799 (1997).
pubmed: 9511984 doi: 10.1023/A:1018529703106
Stahl, B. et al. Detection of four human milk groups with respect to Lewis-blood-group-dependent oligosaccharides by serologic and chromatographic analysis. Adv. Exp. Med. Biol. 501, 299–306 (2001).
pubmed: 11787693 doi: 10.1007/978-1-4615-1371-1_37
Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl Acad. Sci. USA 81, 4193–4197 (1984).
pubmed: 6588382 pmcid: 345395 doi: 10.1073/pnas.81.13.4193
Samuel, T. M. et al. Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers. Sci. Rep. 9, 11767 (2019).
pubmed: 31409852 pmcid: 6692355 doi: 10.1038/s41598-019-48337-4
Rudloff, S. & Kunz, C. Milk oligosaccharides and metabolism in infants. Adv. Nutr. 3, 398s–405s (2012).
pubmed: 22585918 pmcid: 3649476 doi: 10.3945/an.111.001594
Goehring, K. C., Kennedy, A. D., Prieto, P. A. & Buck, R. H. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE 9, e101692 (2014).
pubmed: 24999728 pmcid: 4085000 doi: 10.1371/journal.pone.0101692
Vandenplas, Y. et al. Human milk oligosaccharides: 2’-fucosyllactose (2’-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161 (2018).
pmcid: 6164445 doi: 10.3390/nu10091161
Alderete, T. L. et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am. J. Clin. Nutr. 102, 1381–1388 (2015).
pubmed: 26511224 pmcid: 6546222 doi: 10.3945/ajcn.115.115451
Larsson, M. W. et al. Human milk oligosaccharide composition is associated with excessive weight gain during exclusive breastfeeding-an explorative study. Front. Pediatr. 7, 297 (2019).
pubmed: 31380329 pmcid: 6657391 doi: 10.3389/fped.2019.00297
Davis, J. C. et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci. Rep. 7, 40466 (2017).
pubmed: 28079170 pmcid: 5227965 doi: 10.1038/srep40466
Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016).
pubmed: 26898329 pmcid: 4793393 doi: 10.1016/j.cell.2016.01.024
Cowardin, C. A. et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl Acad. Sci. USA 116, 11988–11996 (2019).
pubmed: 31138692 pmcid: 6575181
Sprenger, N., Lee, L. Y., De Castro, C. A., Steenhout, P. & Thakkar, S. K. Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS ONE 12, e0171814 (2017).
pubmed: 28182762 pmcid: 5300226 doi: 10.1371/journal.pone.0171814
Phipps, K. R. et al. Safety evaluation of a mixture of the human-identical milk oligosaccharides 2’-fucosyllactose and difucosyllactose. Food Chem. Toxicol. 120, 552–565 (2018).
pubmed: 30076915 doi: 10.1016/j.fct.2018.07.054
Lee, S. et al. 2’-Fucosyllactose supplementation improves gut-brain signaling and diet-induced obese phenotype and changes the gut microbiota in high fat-fed mice. Nutrients 12, 1003 (2020).
pmcid: 7231103 doi: 10.3390/nu12041003
Fields, D. A., Higgins, P. B. & Radley, D. Air-displacement plethysmography: here to stay. Curr. Opin. Clin. Nutr. Metab. Care 8, 624–629 (2005).
pubmed: 16205463 doi: 10.1097/01.mco.0000171127.44525.07
Ellis, K. J. et al. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am. J. Clin. Nutr. 85, 90–95 (2007).
pubmed: 17209182 doi: 10.1093/ajcn/85.1.90
Urlando, A., Dempster, P. & Aitkens, S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr. Res. 53, 486–492 (2003).
pubmed: 12595599 doi: 10.1203/01.PDR.0000049669.74793.E3
Austin, S. & Benet, T. Quantitative determination of non-lactose milk oligosaccharides. Anal. Chim. Acta 1010, 86–96 (2018).
pubmed: 29447675 doi: 10.1016/j.aca.2017.12.036
van Leeuwen, S. S. et al. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology 24, 728–739 (2014).
pubmed: 24789815 doi: 10.1093/glycob/cwu036
WHO MGRS Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 450, 76–85 (2006).
Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).
pubmed: 18206223 pmcid: 2258311 doi: 10.1016/S0140-6736(07)61692-4
Martorell, R. & Zongrone, A. Intergenerational influences on child growth and undernutrition. Paediatr. Perinat. Epidemiol. 26(Suppl. 1), 302–314 (2012).
pubmed: 22742617 doi: 10.1111/j.1365-3016.2012.01298.x
Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).
pubmed: 24896187 pmcid: 4189846 doi: 10.1038/nature13421
Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science 339, 548–554 (2013).
pubmed: 23363771 pmcid: 3667500 doi: 10.1126/science.1229000
Mosca, F. & Gianni, M. L. Human milk: composition and health benefits. Pediatr. Med. Chir. 39, 155 (2017).
pubmed: 28673076 doi: 10.4081/pmc.2017.155
Eriksen, K. G., Christensen, S. H., Lind, M. V. & Michaelsen, K. F. Human milk composition and infant growth. Curr. Opin. Clin. Nutr. Metab. Care 21, 200–206 (2018).
pubmed: 29461264 doi: 10.1097/MCO.0000000000000466
Coppa, G. V. et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J. Pediatr. Gastroenterol. Nutr. 53, 80 (2011).
pubmed: 21478759 doi: 10.1097/MPG.0b013e3182073103
Austin, S. et al. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients 8, 346 (2016).
pmcid: 4924187 doi: 10.3390/nu8060346
Lefebvre, G. et al. Time of lactation and maternal fucosyltransferase genetic polymorphisms determine the variability in human milk oligosaccharides. Front. Nutr. 29, 574459 (2020).
De Leoz, M. L. et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J. Proteome Res. 11, 4662–4672 (2012).
pubmed: 22900748 pmcid: 3478894 doi: 10.1021/pr3004979
Austin, S. et al. Human milk oligosaccharides in the milk of mothers delivering term versus preterm infants. Nutrients 11, 1282 (2019).
pmcid: 6627155 doi: 10.3390/nu11061282
Spevacek, A. R. et al. Infant maturity at birth reveals minor differences in the maternal milk metabolome in the first month of lactation. J. Nutr. 145, 1698–1708 (2015).
pubmed: 26041675 pmcid: 4516766 doi: 10.3945/jn.115.210252
Nakhla, T., Fu, D., Zopf, D., Brodsky, N. L. & Hurt, H. Neutral oligosaccharide content of preterm human milk. Br. J. Nutr. 82, 361–367 (1999).
pubmed: 10673908 doi: 10.1017/S0007114599001609
Cheng, L. et al. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit. Rev. Food Sci. Nutr. 24, 1–17 (2020).
Berger, B. et al. Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio 11, 03196–19 (2020).
doi: 10.1128/mBio.03196-19
Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
pubmed: 25974306 doi: 10.1016/j.chom.2015.04.004
Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757 (2018).
pubmed: 30214024 pmcid: 6137148 doi: 10.1038/s41598-018-32037-6
Matsuki, T. et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 24, 11939 (2016).
doi: 10.1038/ncomms11939
Macfarlane, G. T. & Macfarlane, S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 45(Suppl.), 120–127 (2011).
doi: 10.1097/MCG.0b013e31822fecfe
Rasmussen, S. H. et al. Antibiotic exposure in early life and childhood overweight and obesity: a systematic review and meta-analysis. Diabetes Obes. Metab. 20, 1508–1514 (2018).
pubmed: 29359849 doi: 10.1111/dom.13230
Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 30, 475–490 (2016).
doi: 10.1016/S0140-6736(15)01024-7
Larsson, M. W. et al. Excessive weight gain followed by catch-down in exclusively breastfed infants: an exploratory study. Nutrients 10, 1290 (2018).
pmcid: 6164044 doi: 10.3390/nu10091290
Larsson, M. W., Larnkjaer, A., Christensen, S. H., Molgaard, C. & Michaelsen, K. F. Very high weight gain during exclusive breastfeeding followed by slowdown during complementary feeding: two case reports. J. Hum. Lact. 35, 44–48 (2019).
pubmed: 29543560 doi: 10.1177/0890334418756580
Alexander, D. D. et al. Growth of infants consuming whey-predominant term infant formulas with a protein content of 1.8 g/100 kcal: a multicenter pooled analysis of individual participant data. Am. J. Clin. Nutr. 104, 1083–1092 (2016).
pubmed: 27604774 doi: 10.3945/ajcn.116.130633
Lagström, H. et al. Associations between human milk oligosaccharides and growth in infancy and early childhood Am. J. Clin. Nutr. 769–778 (2020).
Storm, H. M. et al. 2’-Fucosyllactose is well tolerated in a 100% whey, partially hydrolyzed infant formula with bifidobacterium lactis: a randomized controlled trial. Glob. Pediatr. Health 6, https://doi.org/10.1177/2333794X19833995 (2019).
Puccio, G. et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 64, 624–631 (2017).
pubmed: 28107288 pmcid: 5378003 doi: 10.1097/MPG.0000000000001520
Marriage, B. J., Buck, R. H., Goehring, K. C., Oliver, J. S. & Williams, J. A. Infants fed a lower calorie formula with 2’FL show growth and 2’FL uptake like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 61, 649–658 (2015).
pubmed: 26154029 pmcid: 4645963 doi: 10.1097/MPG.0000000000000889
Kajzer, J., Oliver, J. & Marriage, B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J. 30(Suppl.), 671.4-.4 (2016).

Auteurs

Aristea Binia (A)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland. Aristea.Binia@rdls.nestle.com.

Luca Lavalle (L)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland.

Cheng Chen (C)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland.

Sean Austin (S)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland.

Massimo Agosti (M)

Ospedale del Ponte, Varese, Italy.

Isam Al-Jashi (I)

Al Jashi Isam Private Med. Practice, Bucharest, Romania.

Almerinda Barroso Pereira (AB)

Hospital de São Marcos, Braga, Portugal.

Maria Jose Costeira (MJ)

Instituto de Investigação em Ciências da Vida e Saúde, Braga, Portugal.

Maria Gorett Silva (MG)

Hospital de S. João, Porto, Portugal.

Giovanna Marchini (G)

Karolinska University Hospital, Stockholm, Sweden.

Cecilia Martínez-Costa (C)

Hospital Clínico Universitario de Valencia, Valencia, Spain.

Tom Stiris (T)

Oslo University Hospital, Oslo, Norway.

Sylvia-Maria Stoicescu (SM)

Polizu Hospital, Bucharest, Romania.

Mireille Vanpée (M)

Karolinska University Hospital, Stockholm, Sweden.

Thameur Rakza (T)

Centre d'Investigation Clinique de Lille, Hôpital Jeanne de Flandre, Lille, France.

Claude Billeaud (C)

Hôpital des enfants, CHU Pellegrin, Bordeaux, France.

Jean-Charles Picaud (JC)

Hôpital de la Croix Rousse, Lyon, France.

Magnus Domellöf (M)

Umeå University, Umeå, Sweden.

Rachel Adams (R)

Cultivate: Nutrition Content + Strategy, Decatur, GA, USA.

Euridice Castaneda-Gutierrez (E)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland.

Norbert Sprenger (N)

Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH