The Reliability of Metagenome-Assembled Genomes (MAGs) in Representing Natural Populations: Insights from Comparing MAGs against Isolate Genomes Derived from the Same Fecal Sample.
assembly
gene abundance
genome completeness
genome recovery
metagenomes
metagenomics
Journal
Applied and environmental microbiology
ISSN: 1098-5336
Titre abrégé: Appl Environ Microbiol
Pays: United States
ID NLM: 7605801
Informations de publication
Date de publication:
26 02 2021
26 02 2021
Historique:
received:
21
10
2020
accepted:
06
01
2021
pubmed:
17
1
2021
medline:
7
4
2021
entrez:
16
1
2021
Statut:
epublish
Résumé
The recovery of metagenome-assembled genomes (MAGs) from metagenomic data has recently become a common task for microbial studies. The strengths and limitations of the underlying bioinformatics algorithms are well appreciated by now based on performance tests with mock data sets of known composition. However, these mock data sets do not capture the complexity and diversity often observed within natural populations, since their construction typically relies on only a single genome of a given organism. Further, it remains unclear if MAGs can recover population-variable genes (those shared by >10% but <90% of the members of the population) as efficiently as core genes (those shared by >90% of the members). To address these issues, we compared the gene variabilities of pathogenic
Identifiants
pubmed: 33452027
pii: AEM.02593-20
doi: 10.1128/AEM.02593-20
pmc: PMC8105024
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : K01 AI103544
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI137679
Pays : United States
Informations de copyright
Copyright © 2021 American Society for Microbiology.
Références
PLoS One. 2013;8(2):e57923
pubmed: 23460914
Genome Res. 2020 Mar;30(3):315-333
pubmed: 32188701
Nat Methods. 2017 Nov;14(11):1063-1071
pubmed: 28967888
Science. 2014 Apr 25;344(6182):416-20
pubmed: 24763590
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91
pubmed: 16381842
Nat Biotechnol. 2015 Oct;33(10):1045-52
pubmed: 26344404
Nucleic Acids Res. 2018 Jul 2;46(W1):W282-W288
pubmed: 29905870
Trop Med Int Health. 2019 Feb;24(2):205-219
pubmed: 30444557
Environ Microbiol. 2012 Feb;14(2):347-55
pubmed: 22151572
Genome Res. 2002 Apr;12(4):656-64
pubmed: 11932250
ISME J. 2017 Nov;11(11):2399-2406
pubmed: 28731467
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
Syst Appl Microbiol. 2019 Jan;42(1):30-40
pubmed: 30528276
ISME J. 2019 Mar;13(3):767-779
pubmed: 30397261
Genome Biol. 2017 Sep 21;18(1):181
pubmed: 28934976
Nat Methods. 2016 Apr 28;13(5):401-4
pubmed: 27123815
Cell Rep. 2020 Mar 3;30(9):2909-2922.e6
pubmed: 32130896
Nature. 2015 Dec 17;528(7582):364-9
pubmed: 26633631
Microbiome. 2016 Mar 08;4:8
pubmed: 26951112
mBio. 2019 Jun 4;10(3):
pubmed: 31164461
Environ Microbiol. 2020 Aug;22(8):3394-3412
pubmed: 32495495
Genome Biol. 2009;10(8):R85
pubmed: 19698104
Nucleic Acids Res. 2014 Apr;42(8):e73
pubmed: 24589583
Microbiome. 2014 Aug 01;2:26
pubmed: 25136443
Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91
pubmed: 17220447
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
ISME J. 2016 Jul;10(7):1589-601
pubmed: 26744812
mSystems. 2018 Sep 25;3(5):
pubmed: 30273419
PeerJ. 2020 Oct 30;8:e10119
pubmed: 33194386
Nat Biotechnol. 2017 Aug 8;35(8):725-731
pubmed: 28787424
Nat Microbiol. 2018 Jul;3(7):804-813
pubmed: 29891866
Appl Environ Microbiol. 2019 Nov 27;85(24):
pubmed: 31585992