Supercharging BRD4 with NUT in carcinoma.
Carcinoma
/ genetics
Cell Cycle Proteins
/ genetics
Cell Line, Tumor
Chromatin
/ genetics
Humans
Neoplasm Proteins
/ genetics
Nuclear Proteins
/ genetics
Proto-Oncogene Proteins c-myc
/ genetics
SOXB1 Transcription Factors
/ genetics
Transcription Factors
/ genetics
Tumor Suppressor Proteins
/ genetics
p300-CBP Transcription Factors
/ genetics
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
26
10
2020
accepted:
11
12
2020
revised:
09
12
2020
pubmed:
17
1
2021
medline:
31
7
2021
entrez:
16
1
2021
Statut:
ppublish
Résumé
NUT carcinoma (NC) is an extremely aggressive squamous cancer with no effective therapy. NC is driven, most commonly, by the BRD4-NUT fusion oncoprotein. BRD4-NUT combines the chromatin-binding bromo- and extraterminal domain-containing (BET) protein, BRD4, with an unstructured, poorly understood protein, NUT, which recruits and activates the histone acetyltransferase p300. Recruitment of p300 to chromatin by BRD4 is believed to lead to the formation of hyperacetylated nuclear foci, as seen by immunofluorescence. BRD4-NUT nuclear foci correspond with massive contiguous regions of chromatin co-enriched with BRD4-NUT, p300, and acetylated histones, termed "megadomains" (MD). Megadomains stretch for as long as 2 MB. Proteomics has defined a BRD4-NUT chromatin complex in which members that associate with BRD4 also exist as rare NUT-fusion partners. This suggests that the common pathogenic denominator is the presence of both BRD4 and NUT, and that the function of BRD4-NUT may mimic that of wild-type BRD4. If so, then MDs may function as massive super-enhancers, activating transcription in a BET-dependent manner. Common targets of MDs across multiple NCs and tissues are three stem cell-related transcription factors frequently implicated in cancer: MYC, SOX2, and TP63. Recently, MDs were found to form a novel nuclear sub-compartment, called subcompartment M (subM), where MD-MD interactions occur both intra- and inter-chromosomally. Included in subM are MYC, SOX2, and TP63. Here we explore the possibility that if MDs are simply large super-enhancers, subM may exist in other cell systems, with broad implications for how 3D organization of the genome may function in gene regulation and maintenance of cell identity. Finally, we discuss how our knowledge of BRD4-NUT function has been leveraged for the therapeutic development of first-in-class BET inhibitors and other targeted strategies.
Identifiants
pubmed: 33452461
doi: 10.1038/s41388-020-01625-0
pii: 10.1038/s41388-020-01625-0
pmc: PMC7914217
mid: NIHMS1654581
doi:
Substances chimiques
BRD4 protein, human
0
Cell Cycle Proteins
0
Chromatin
0
MYC protein, human
0
NUTM1 protein, human
0
Neoplasm Proteins
0
Nuclear Proteins
0
Proto-Oncogene Proteins c-myc
0
SOX2 protein, human
0
SOXB1 Transcription Factors
0
TP63 protein, human
0
Transcription Factors
0
Tumor Suppressor Proteins
0
p300-CBP Transcription Factors
EC 2.3.1.48
p300-CBP-associated factor
EC 2.3.1.48
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1396-1408Subventions
Organisme : NIH HHS
ID : DP5 OD024587
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA124633
Pays : United States
Références
French CA, Kutok JL, Faquin WC, Toretsky JA, Antonescu CR, Griffin CA, et al. Midline carcinoma of children and young adults with nut rearrangement. J Clin Oncol. 2004;22:4135–9. Epub 2004/10/16.
pubmed: 15483023
doi: 10.1200/JCO.2004.02.107
French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. Brd4-nut fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–7.
pubmed: 12543779
Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S, et al. A bromodomain protein, mcap, associates with mitotic chromosomes and affects g(2)-to-m transition. Mol Cell Biol. 2000;20:6537–49.
pubmed: 10938129
pmcid: 86127
doi: 10.1128/MCB.20.17.6537-6549.2000
Shiota H, Barral S, Buchou T, Tan M, Coute Y, Charbonnier G, et al. Nut directs p300-dependent, genome-wide h4 hyperacetylation in male germ cells. Cell Rep. 2018;24:3477–87. e6.
pubmed: 30257209
doi: 10.1016/j.celrep.2018.08.069
Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. The double bromodomain protein brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA. 2003;100:8758–63.
pubmed: 12840145
doi: 10.1073/pnas.1433065100
Reynoird N, Schwartz BE, Delvecchio M, Sadoul K, Meyers D, Mukherjee C. et al. Oncogenesis by sequestration of cbp/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J. 2010;29:2943–52. Epub 2010/08/03.
pubmed: 20676058
pmcid: 2944051
doi: 10.1038/emboj.2010.176
French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, et al. Brd-nut oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27:2237–42. Epub 2007/10/16.
pubmed: 17934517
doi: 10.1038/sj.onc.1210852
Alekseyenko AA, Walsh EM, Zee BM, Pakozdi T, Hsi P, Lemieux ME, et al. Ectopic protein interactions within brd4-chromatin complexes drive oncogenic megadomain formation in nut midline carcinoma. Proc Natl Acad Sci USA. 2017;114:E4184–92. Epub 2017/05/10.
pubmed: 28484033
doi: 10.1073/pnas.1702086114
Shiota H, Elya JE, Alekseyenko A, Chou PM, Gorman SA, Barbash O. et al. Z4’ complex member fusions in nut carcinoma: Implications for a novel oncogenic mechanism. Mol Cancer Res. 2018;16:1826–33.
pubmed: 30139738
pmcid: 6279489
doi: 10.1158/1541-7786.MCR-18-0474
French CA, Rahman S, Walsh EM, Kuhnle S, Grayson AR, Lemieux ME, et al. Nsd3-nut fusion oncoprotein in nut midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov. 2014;4:928–41. Epub 2014/05/31.
pubmed: 24875858
pmcid: 4125436
doi: 10.1158/2159-8290.CD-14-0014
Chau NG, Ma C, Danga K, Al-Sayegh H, Nardi V, Barrette R. et al. An anatomical site and genetic based prognostic model for patients with nut midline carcinoma: analysis of 124 patients. JNCI Cancer Spectrum. 2019;4:pkz094.
pubmed: 32328562
pmcid: 7165803
doi: 10.1093/jncics/pkz094
Bauer DE, Mitchell CM, Strait KM, Lathan CS, Stelow EB, Luer SC, et al. Clinicopathologic features and long-term outcomes of nut midline carcinoma. Clin Cancer Res. 2012;18:5773–9. Epub 2012/08/17.
pubmed: 22896655
pmcid: 3473162
doi: 10.1158/1078-0432.CCR-12-1153
Maniakas A, Dadu R, Busaidy NL, Wang JR, Ferrarotto R, Lu C, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020. Epub 2020/08/08.
Wang R, Liu W, Helfer CM, Bradner JE, Hornick JL, Janicki SM, et al. Activation of sox2 expression by brd4-nut oncogenic fusion drives neoplastic transformation in nut midline carcinoma. Cancer Res. 2014;74:3332–43 .
pubmed: 24736545
pmcid: 4097982
doi: 10.1158/0008-5472.CAN-13-2658
Grayson AR, Walsh EM, Cameron MJ, Godec J, Ashworth T, Ambrose JM, et al. Myc, a downstream target of brd-nut, is necessary and sufficient for the blockade of differentiation in nut midline carcinoma. Oncogene. 2014;33:1736–42. Epub 2013/04/23.
pubmed: 23604113
doi: 10.1038/onc.2013.126
Stirnweiss A, Oommen J, Kotecha RS, Kees UR, Beesley AH. Molecular-genetic profiling and high-throughput in vitro drug screening in nut midline carcinoma-an aggressive and fatal disease. Oncotarget. 2017;8:112313–29 .
pubmed: 29348827
pmcid: 5762512
doi: 10.18632/oncotarget.22862
Lee JK, Louzada S, An Y, Kim SY, Kim S, Youk J. et al. Complex chromosomal rearrangements by single catastrophic pathogenesis in nut midline carcinoma. Ann Oncol. 2017;28:890–7. PMC5378225.
pubmed: 28203693
pmcid: 5378225
doi: 10.1093/annonc/mdw686
Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, de La Motte Rouge T. et al. Clinical response of carcinomas harboring the brd4-nut oncoprotein to the targeted bromodomain inhibitor otx015/mk-8628. Cancer Discov. 2016;6:492–500. Epub 2016/03/16.
pubmed: 26976114
pmcid: 4854801
doi: 10.1158/2159-8290.CD-15-1335
Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, et al. The oncogenic brd4-nut chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507–23. Epub 2015/07/30.
pubmed: 26220994
pmcid: 4526735
doi: 10.1101/gad.267583.115
Wang R, You J. Mechanistic analysis of the role of bromodomain-containing protein 4 (brd4) in brd4-nut oncoprotein-induced transcriptional activation. J Biol Chem. 2015;290:2744–58.
pubmed: 25512383
doi: 10.1074/jbc.M114.600759
Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, et al. From silencing to gene expression: real-time analysis in single cells. Cell. 2004;116:683–98. Epub 2004/03/10.
pubmed: 15006351
pmcid: 4942132
doi: 10.1016/S0092-8674(04)00171-0
Alekseyenko AA, McElroy KA, Kang H, Zee BM, Kharchenko PV, Kuroda MI. Biotap-xl: cross-linking/tandem affinity purification to study DNA targets, rna, and protein components of chromatin-associated complexes. Curr Protoc Mol Biol. 2015;109:21 30 1–21 30 2. Epub 2015/01/07.
doi: 10.1002/0471142727.mb2130s109
Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. Bet inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538–42. Epub 2015/09/15.
pubmed: 26367796
pmcid: 6069604
doi: 10.1038/nature14888
Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW, et al. The brd4 extraterminal domain confers transcription activation independent of ptefb by recruiting multiple proteins, including nsd3. Mol Cell Biol. 2011;31:2641–52. Epub 2011/05/11.
pubmed: 21555454
pmcid: 3133372
doi: 10.1128/MCB.01341-10
Roe JS, Mercan F, Rivera K, Pappin DJ, Vakoc CR. Bet bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol Cell. 2015;58:1028–39. PMC4475489.
pubmed: 25982114
pmcid: 4475489
doi: 10.1016/j.molcel.2015.04.011
Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, et al. Analysis of the human endogenous coregulator complexome. Cell. 2011;145:787–99.
pubmed: 21620140
pmcid: 3131083
doi: 10.1016/j.cell.2011.05.006
Spruijt CG, Luijsterburg MS, Menafra R, Lindeboom RG, Jansen PW, Edupuganti RR, et al. Zmynd8 co-localizes with nurd on target genes and regulates poly(adp-ribose)-dependent recruitment of gatad2a/nurd to sites of DNA damage. Cell Rep. 2016;17:783–98.
pubmed: 27732854
doi: 10.1016/j.celrep.2016.09.037
Li N, Li Y, Lv J, Zheng X, Wen H, Shen H, et al. Zmynd8 reads the dual histone mark h3k4me1-h3k14ac to antagonize the expression of metastasis-linked genes. Mol Cell. 2016;63:470–84 .
pubmed: 27477906
pmcid: 4975651
doi: 10.1016/j.molcel.2016.06.035
Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, et al. Recruitment of p-tefb for stimulation of transcriptional elongation by the bromodomain protein brd4. Mol Cell. 2005;19:535–45.
pubmed: 16109377
doi: 10.1016/j.molcel.2005.06.029
Yang Z, He N, Zhou Q. Brd4 recruits p-tefb to chromosomes at late mitosis to promote g1 gene expression and cell cycle progression. Mol Cell Biol. 2008;28:967–76.
pubmed: 18039861
doi: 10.1128/MCB.01020-07
Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, et al. Molecular cloning and functional analysis of the adenovirus e1a-associated 300-kd protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8:869–84. Epub 1994/04/15.
pubmed: 7523245
doi: 10.1101/gad.8.8.869
Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature. 2018;562:538–44. Epub 2018/10/17.
pubmed: 30323286
pmcid: 6914384
doi: 10.1038/s41586-018-0621-1
Talbot D, Collis P, Antoniou M, Vidal M, Grosveld F, Greaves DR. A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature. 1989;338:352–5. Epub 1989/03/23.
pubmed: 2922063
doi: 10.1038/338352a0
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34. Epub 2013/04/16.
pubmed: 23582323
pmcid: 3760967
doi: 10.1016/j.cell.2013.03.036
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19. Epub 2013/04/16.
pubmed: 23582322
pmcid: 3653129
doi: 10.1016/j.cell.2013.03.035
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47. Epub 2013/10/15.
pubmed: 24119843
doi: 10.1016/j.cell.2013.09.053
Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein brd4 is a positive regulatory component of p-tefb and stimulates rna polymerase ii-dependent transcription. Mol Cell. 2005;19:523–34.
pubmed: 16109376
doi: 10.1016/j.molcel.2005.06.027
Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, et al. Control of embryonic stem cell identity by brd4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 2014;9:234–47. Epub 2014/09/30.
pubmed: 25263550
pmcid: 4317728
doi: 10.1016/j.celrep.2014.08.055
Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by erna. Nature. 2011;474:390–4. Epub 2011/05/17.
pubmed: 21572438
pmcid: 3117022
doi: 10.1038/nature10006
McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C, et al. Ccat1 is an enhancer-templated rna that predicts bet sensitivity in colorectal cancer. J Clin Invest. 2016;126:639–52. Epub 2016/01/12.
pubmed: 26752646
pmcid: 4731162
doi: 10.1172/JCI83265
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, et al. Human colorectal cancer-specific ccat1-l lncrna regulates long-range chromatin interactions at the myc locus. Cell Res. 2014;24:513–31. Epub 2014/03/26.
pubmed: 24662484
pmcid: 4011346
doi: 10.1038/cr.2014.35
Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, et al. Pvt1 dependence in cancer with myc copy-number increase. Nature. 2014;512:82–6. Epub 2014/07/22.
pubmed: 25043044
pmcid: 4767149
doi: 10.1038/nature13311
Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large b cell lymphoma. Cancer Cell. 2013;24:777–90. Epub 2013/12/18.
pubmed: 24332044
pmcid: 4018722
doi: 10.1016/j.ccr.2013.11.003
Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, et al. Notch1-rbpj complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci USA. 2014;111:705–10. Epub 2014/01/01.
pubmed: 24374627
doi: 10.1073/pnas.1315023111
Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, et al. A notch1-driven myc enhancer promotes t cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130–7. Epub 2014/09/10.
pubmed: 25194570
pmcid: 4192073
doi: 10.1038/nm.3665
Zhang X, Zegar T, Lucas A, Morrison-Smith C, Knox T, French CA, et al. Therapeutic targeting of p300/cbp hat domain for the treatment of nut midline carcinoma. Oncogene. 2020;39:4770–9. Epub 2020/05/06.
pubmed: 32366905
pmcid: 7286816
doi: 10.1038/s41388-020-1301-9
Guo L, Li J, Zeng H, Guzman AG, Li T, Lee M, et al. A combination strategy targeting enhancer plasticity exerts synergistic lethality against beti-resistant leukemia cells. Nat Commun. 2020;11:740. Epub 2020/02/08.
pubmed: 32029739
pmcid: 7005144
doi: 10.1038/s41467-020-14604-6
Vito D, Eriksen JC, Skjodt C, Weilguny D, Rasmussen SK, Smales CM. Defining IncRNAs correlated with CHO cell growth and IgG productivity by RNA-SEQ. iScience. 2020;23:100785. Epub 2020/01/22.
pubmed: 31962234
doi: 10.1016/j.isci.2019.100785
Riquelme E, Suraokar MB, Rodriguez J, Mino B, Lin HY, Rice DC, et al. Frequent coamplification and cooperation between c-myc and pvt1 oncogenes promote malignant pleural mesothelioma. J Thorac Oncol. 2014;9:998–1007. Epub 2014/06/14.
pubmed: 24926545
pmcid: 4287384
doi: 10.1097/JTO.0000000000000202
Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, et al. Direct induction of cyclin d2 by myc contributes to cell cycle progression and sequestration of p27. EMBO J. 1999;18:5321–33. Epub 1999/10/03.
pubmed: 10508165
pmcid: 1171602
doi: 10.1093/emboj/18.19.5321
Warner BJ, Blain SW, Seoane J, Massague J. MYC downregulation by transforming growth factor beta required for activation of the p15(ink4b) g(1) arrest pathway. Mol Cell Biol. 1999;19:5913–22. Epub 1999/08/24.
pubmed: 10454538
pmcid: 84444
doi: 10.1128/MCB.19.9.5913
Mateyak MK, Obaya AJ, Sedivy JM. C-myc regulates cyclin d-CDK4 and -CDK6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol. 1999;19:4672–83. Epub 1999/06/22.
pubmed: 10373516
pmcid: 84265
doi: 10.1128/MCB.19.7.4672
Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, et al. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA. 2000;97:2229–34. Epub 2000/02/26.
pubmed: 10688915
doi: 10.1073/pnas.050586197
Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol. 2004;24:7538–47. Epub 2004/08/18.
pubmed: 15314163
pmcid: 506988
doi: 10.1128/MCB.24.17.7538-7547.2004
Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ. Myc induces cyclin d1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene. 1994;9:3635–45. Epub 1994/12/01.
pubmed: 7526316
Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, et al. Identification of a myc-dependent step during the formation of active g1 cyclin-cdk complexes. EMBO J. 1995;14:4814–26. Epub 1995/10/02.
pubmed: 7588611
pmcid: 394579
doi: 10.1002/j.1460-2075.1995.tb00163.x
Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the brd4-nut dependency of nut midline carcinoma uncovers a synergism between betis and cdk4/6is. Genes Dev. 2018;32:1188–200.
pubmed: 30135075
pmcid: 6120715
doi: 10.1101/gad.315648.118
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, et al. P63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16. Epub 1998/10/17.
pubmed: 9774969
doi: 10.1016/S1097-2765(00)80275-0
Giacobbe A, Compagnone M, Bongiorno-Borbone L, Antonov A, Markert EK, Zhou JH, et al. P63 controls cell migration and invasion by transcriptional regulation of mtss1. Oncogene. 2016;35:1602–8. Epub 2015/06/30.
pubmed: 26119942
doi: 10.1038/onc.2015.230
Latina A, Viticchie G, Lena AM, Piro MC, Annicchiarico-Petruzzelli M, Melino G, et al. Deltanp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene. 2016;35:1493–503. Epub 2015/06/23.
pubmed: 26096935
doi: 10.1038/onc.2015.222
Hamdan FH, Johnsen SA. Deltanp63-dependent super enhancers define molecular identity in pancreatic cancer by an interconnected transcription factor network. Proc Natl Acad Sci USA. 2018;115:E12343–E52. Epub 2018/12/14.
pubmed: 30541891
doi: 10.1073/pnas.1812915116
Abbas HA, Bui NHB, Rajapakshe K, Wong J, Gunaratne P, Tsai KY, et al. Distinct tp63 isoform-driven transcriptional signatures predict tumor progression and clinical outcomes. Cancer Res. 2018;78:451–62. Epub 2017/11/29.
pubmed: 29180475
doi: 10.1158/0008-5472.CAN-17-1803
Westcott JM, Camacho S, Nasir A, Huysman ME, Rahhal R, Dang TT, et al. Deltanp63-regulated epithelial-to-mesenchymal transition state heterogeneity confers a leader-follower relationship that drives collective invasion. Cancer Res. 2020;80:3933–44. Epub 2020/07/15.
pubmed: 32661136
doi: 10.1158/0008-5472.CAN-20-0014
Tilson MP, Bishop JA. Utility of p40 in the differential diagnosis of small round blue cell tumors of the sinonasal tract. Head Neck Pathol. 2014;8:141–5.
pubmed: 24114197
doi: 10.1007/s12105-013-0496-2
Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. Sox2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41:1238–42. Epub 2009/10/06.
pubmed: 19801978
pmcid: 2783775
doi: 10.1038/ng.465
Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembele D, et al. Sox2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS ONE. 2010;5:e8960. Epub 2010/02/04.
pubmed: 20126410
pmcid: 2813300
doi: 10.1371/journal.pone.0008960
Mukhopadhyay A, Berrett KC, Kc U, Clair PM, Pop SM, Carr SR, et al. Sox2 cooperates with lkb1 loss in a mouse model of squamous cell lung cancer. Cell Rep. 2014;8:40–9. Epub 2014/06/24.
pubmed: 24953650
pmcid: 4410849
doi: 10.1016/j.celrep.2014.05.036
Chen Y, Li Y, Peng Y, Zheng X, Fan S, Yi Y, et al. Deltanp63alpha down-regulates c-myc modulator mm1 via e3 ligase herc3 in the regulation of cell senescence. Cell Death Differ. 2018;25:2118–29. Epub 2018/06/09.
pubmed: 29880857
pmcid: 6261956
doi: 10.1038/s41418-018-0132-5
Alexandrova EM, Petrenko O, Nemajerova A, Romano RA, Sinha S, Moll UM. Deltanp63 regulates select routes of reprogramming via multiple mechanisms. Cell Death Differ. 2013;20:1698–708. Epub 2013/09/10.
pubmed: 24013722
pmcid: 3824590
doi: 10.1038/cdd.2013.122
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. Epub 2006/08/15.
pubmed: 16904174
doi: 10.1016/j.cell.2006.07.024
Watanabe H, Ma Q, Peng S, Adelmant G, Swain D, Song W, et al. Sox2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest. 2014;124:1636–45. Epub 2014/03/05.
pubmed: 24590290
pmcid: 3973117
doi: 10.1172/JCI71545
Chiang CT, Chu WK, Chow SE, Chen JK. Overexpression of delta np63 in a human nasopharyngeal carcinoma cell line downregulates ckis and enhances cell proliferation. J Cell Physiol. 2009;219:117–22. Epub 2008/12/18.
pubmed: 19089994
doi: 10.1002/jcp.21656
Lanza M, Marinari B, Papoutsaki M, Giustizieri ML, D’Alessandra Y, Chimenti S, et al. Cross-talks in the p53 family: Deltanp63 is an anti-apoptotic target for deltanp73alpha and p53 gain-of-function mutants. Cell Cycle. 2006;5:1996–2004. Epub 2006/08/26.
pubmed: 16931914
doi: 10.4161/cc.5.17.3188
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, et al. Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis. Mol Cell. 2020;78:960–74. e11. Epub 2020/04/25.
pubmed: 32330456
doi: 10.1016/j.molcel.2020.03.031
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93. Epub 2009/10/10.
pubmed: 19815776
pmcid: 2858594
doi: 10.1126/science.1181369
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80. Epub 2014/12/17.
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Rosencrance CD, Ammouri HN, Yu Q, Ge T, Rendleman EJ, Marshall SA, et al. Chromatin hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Mol Cell. 2020;78:112–26. e12. Epub 2020/04/04.
pubmed: 32243828
doi: 10.1016/j.molcel.2020.03.018
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56. Epub 2005/09/13.
pubmed: 16153702
pmcid: 3006442
doi: 10.1016/j.cell.2005.08.020
Saint-Andre V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, et al. Models of human core transcriptional regulatory circuitries. Genome Res. 2016;26:385–96. Epub 2016/02/05.
pubmed: 26843070
pmcid: 4772020
doi: 10.1101/gr.197590.115
Wu T, Kamikawa YF, Donohoe ME. Brd4’s bromodomains mediate histone h3 acetylation and chromatin remodeling in pluripotent cells through p300 and brg1. Cell Rep. 2018;25:1756–71.
pubmed: 30428346
doi: 10.1016/j.celrep.2018.10.003
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of bet bromodomains. Nature. 2010;468:1067–73. Epub 2010/09/28.
pubmed: 20871596
pmcid: 3010259
doi: 10.1038/nature09504
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. Bet bromodomain inhibition as a therapeutic strategy to target c-myc. Cell. 2011;146:904–17. Epub 2011/09/06.
pubmed: 21889194
pmcid: 3187920
doi: 10.1016/j.cell.2011.08.017
Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting myc dependence in cancer by inhibiting bet bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74. Epub 2011/09/29.
pubmed: 21949397
doi: 10.1073/pnas.1108190108
Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of bet recruitment to chromatin as an effective treatment for mll-fusion leukaemia. Nature. 2011;478:529–33. Epub 2011/10/04.
pubmed: 21964340
pmcid: 3679520
doi: 10.1038/nature10509
Wyce A, Ganji G, Smitheman KN, Chung CW, Korenchuk S, Bai Y, et al. Bet inhibition silences expression of mycn and bcl2 and induces cytotoxicity in neuroblastoma tumor models. PLoS ONE. 2013;8:e72967. Epub 2013/09/07.
pubmed: 24009722
pmcid: 3751846
doi: 10.1371/journal.pone.0072967
Henssen A, Thor T, Odersky A, Heukamp L, El-Hindy N, Beckers A, et al. Bet bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget. 2013;4:2080–95. Epub 2013/11/16.
pubmed: 24231268
pmcid: 3875771
doi: 10.18632/oncotarget.1534
Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting mycn in neuroblastoma by bet bromodomain inhibition. Cancer Discov. 2013;3:308–23 .
pubmed: 23430699
pmcid: 3672953
doi: 10.1158/2159-8290.CD-12-0418
Qiu H, Jackson AL, Kilgore JE, Zhong Y, Chan LL, Gehrig PA, et al. Jq1 suppresses tumor growth through downregulating ldha in ovarian cancer. Oncotarget. 2015;6:6915–30. Epub 2015/03/13.
pubmed: 25762632
pmcid: 4466659
doi: 10.18632/oncotarget.3126
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of bet bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82. Epub 2014/04/25.
pubmed: 24759320
pmcid: 4075966
doi: 10.1038/nature13229
Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A. et al. Phase ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 2018;36:3007–3014.
pubmed: 29733771
doi: 10.1200/JCO.2018.78.2292
Piha-Paul SA, Hann CL, French CA, Cousin S, Bra¤a I, Cassier PA. et al. Phase 1 study of molibresib (gsk525762), a bromodomain and extra-terminal domain protein inhibitor, in nut carcinoma and other solid tumors. JNCI Cancer Spectrum. 2019;4:pkz093.
pubmed: 32328561
pmcid: 7165800
doi: 10.1093/jncics/pkz093
Coude MM, Braun T, Berrou J, Dupont M, Bertrand S, Masse A, et al. Bet inhibitor otx015 targets brd2 and brd4 and decreases c-myc in acute leukemia cells. Oncotarget. 2015. Epub 2015/05/21.
Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, Agno JE, et al. Small-molecule inhibition of brdt for male contraception. Cell. 2012;150:673–84. Epub 2012/08/21.
pubmed: 22901802
pmcid: 3420011
doi: 10.1016/j.cell.2012.06.045
Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–23. Epub 2010/11/12.
pubmed: 21068722
pmcid: 5415086
doi: 10.1038/nature09589
Sheppard GS, Wang L, Fidanze SD, Hasvold LA, Liu D, Pratt JK, et al. Discovery of n-ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1h-pyrrolo[2,3-c]pyridine-2-carboxamide (abbv-744), a bet bromodomain inhibitor with selectivity for the second bromodomain. J Med Chem. 2020;63:5585–623. Epub 2020/04/24.
Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of the bd2 bromodomain of bet proteins in prostate cancer. Nature. 2020;578:306–10. Epub 2020/01/24.
pubmed: 31969702
doi: 10.1038/s41586-020-1930-8
Morrison-Smith CD, Knox TM, Filic I, Soroko KM, Eschle BK, Wilkens MK, et al. Combined targeting of the brd4-nut-p300 axis in nut midline carcinoma by dual selective bromodomain inhibitor, neo2734. Mol Cancer Ther. 2020;19:1406–14. Epub 2020/05/07.
pubmed: 32371576
doi: 10.1158/1535-7163.MCT-20-0087
Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, et al. Discovery of a selective catalytic p300/cbp inhibitor that targets lineage-specific tumours. Nature. 2017;550:128–32.
pubmed: 28953875
pmcid: 6050590
doi: 10.1038/nature24028
Romero FA, Murray J, Lai KW, Tsui V, Albrecht BK, An L, et al. Gne-781, a highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (cbp). J Med Chem. 2017;60:9162–83.
pubmed: 28892380
doi: 10.1021/acs.jmedchem.7b00796
Yan Y, Ma J, Wang D, Lin D, Pang X, Wang S, et al. The novel bet-cbp/p300 dual inhibitor neo2734 is active in spop mutant and wild-type prostate cancer. EMBO Mol Med. 2019;11:e10659. Epub 2019/09/29.
pubmed: 31559706
pmcid: 6835201
doi: 10.15252/emmm.201910659
Schwartz BE, Hofer MD, Lemieux ME, Bauer DE, Cameron MJ, West NH, et al. Differentiation of nut midline carcinoma by epigenomic reprogramming. Cancer Res. 2011;71:2686–96. Epub 2011/03/31.
pubmed: 21447744
pmcid: 3070805
doi: 10.1158/0008-5472.CAN-10-3513
Maher OM, Christensen AM, Yedururi S, Bell D, Tarek N. Histone deacetylase inhibitor for nut midline carcinoma. Pediatr Blood Cancer. 2015;62:715–7.
pubmed: 25557064
doi: 10.1002/pbc.25350
Bragelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Bohm S, et al. Systematic kinase inhibitor profiling identifies cdk9 as a synthetic lethal target in nut midline carcinoma. Cell Rep. 2017;20:2833–45. Epub 2017/09/21.
pubmed: 28930680
pmcid: 5622049
doi: 10.1016/j.celrep.2017.08.082
Beesley AH, Stirnweiss A, Ferrari E, Endersby R, Howlett M, Failes TW, et al. Comparative drug screening in nut midline carcinoma. Br J Cancer. 2014;110:1189–98. Epub 2014/02/13.
pubmed: 24518598
pmcid: 3950881
doi: 10.1038/bjc.2014.54
Haack H, Johnson LA, Fry CJ, Crosby K, Polakiewicz RD, Stelow EB, et al. Diagnosis of nut midline carcinoma using a nut-specific monoclonal antibody. Am J Surg Pathol. 2009;33:984–91. Epub 2009/04/14.
pubmed: 19363441
pmcid: 2783402
doi: 10.1097/PAS.0b013e318198d666
French CA, Bakker MAD Who classification of head and neck tumours. 4th ed. El-Naggar A, Chan JKC, Grandis JR, Takata T, Slootweg P, editors. Lyon: International Agency for Research on Cancer (IARC); 2017.
French CA. Nut carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68:583–95. Epub 2018/10/27.
pubmed: 30362654
doi: 10.1111/pin.12727
Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR. et al. Cohesin loss eliminates all loop domains. Cell. 2017;171:305–20. e24.
pubmed: 28985562
pmcid: 5846482
doi: 10.1016/j.cell.2017.09.026
Palmer AC, Sorger PK. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell.2017;171:1678–91. e13.
pubmed: 29245013
pmcid: 5741091
doi: 10.1016/j.cell.2017.11.009
Hinze L, Pfirrmann M, Karim S, Degar J, McGuckin C, Vinjamur D. et al. Synthetic lethality of wnt pathway activation and asparaginase in drug-resistant acute leukemias. Cancer Cell. 2019;35:664–76.e7. Epub 2019/04/17.
pubmed: 30991026
pmcid: 6541931
doi: 10.1016/j.ccell.2019.03.004
Rizk M, Tuzmen S. Patisiran for the treatment of patients with familial amyloid polyneuropathy. Drugs Today (Barc). 2019;55:315–27. Epub 2019/05/28.
doi: 10.1358/dot.2019.55.5.2958475
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with rna-targeting type vi-d crispr effectors. Cell. 2018;173:665–76. e14. Epub 2018/03/20.
pubmed: 29551272
pmcid: 5910255
doi: 10.1016/j.cell.2018.02.033
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549–55. Epub 2020/01/17.
pubmed: 31942075
doi: 10.1038/s41586-019-1922-8
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577:561–5. Epub 2020/01/17.
pubmed: 31942071
doi: 10.1038/s41586-019-1914-8