FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V.
ATPase
actin
fluorescence resonance energy transfer (FRET)
myosin
optical tweezers
single-molecule biophysics
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
18 12 2020
18 12 2020
Historique:
received:
15
08
2020
revised:
06
10
2020
entrez:
17
1
2021
pubmed:
18
1
2021
medline:
2
4
2021
Statut:
ppublish
Résumé
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
Identifiants
pubmed: 33453985
pii: S0021-9258(17)50627-4
doi: 10.1074/jbc.RA120.015632
pmc: PMC7762931
pii:
doi:
Substances chimiques
Actins
0
Phosphates
0
Adenosine Triphosphate
8L70Q75FXE
Adenosine Triphosphatases
EC 3.6.1.-
Myosin Type V
EC 3.6.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17383-17397Subventions
Organisme : NIA NIH HHS
ID : R37 AG026160
Pays : United States
Organisme : NIDCD NIH HHS
ID : F32 DC016788
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR032961
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG026160
Pays : United States
Organisme : NIAMS NIH HHS
ID : R37 AR032961
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL127699
Pays : United States
Informations de copyright
Copyright © 2020 © 2020 Gunther et al. Published by Elsevier Inc. All rights reserved.
Références
Cytoskeleton (Hoboken). 2016 Nov;73(11):643-651
pubmed: 27583666
Annu Rev Biophys. 2010;39:539-57
pubmed: 20192767
Biophys J. 1998 Sep;75(3):1424-38
pubmed: 9726944
Am J Physiol Regul Integr Comp Physiol. 2011 Jun;300(6):R1401-8
pubmed: 21346239
Biochemistry. 1971 Dec 7;10(25):4617-24
pubmed: 4258719
Biochemistry. 2002 Jul 2;41(26):8508-17
pubmed: 12081502
Cell Motil Cytoskeleton. 2002 Jan;51(1):1-15
pubmed: 11810692
Mol Biol Cell. 2001 Apr;12(4):780-94
pubmed: 11294886
Biochem J. 1991 Nov 1;279 ( Pt 3):711-8
pubmed: 1953663
Biochemistry. 1997 Sep 30;36(39):11828-36
pubmed: 9305974
Structure. 2013 Nov 5;21(11):1911-22
pubmed: 24210227
Biochem J. 1985 Dec 1;232(2):343-9
pubmed: 3911945
Elife. 2019 Sep 17;8:
pubmed: 31526481
Biophys J. 2012 Jun 6;102(11):2545-55
pubmed: 22713570
Biochemistry. 2004 Mar 9;43(9):2605-12
pubmed: 14992598
Curr Opin Cell Biol. 2004 Feb;16(1):61-7
pubmed: 15037306
Biophys J. 2001 Nov;81(5):2795-816
pubmed: 11606292
Nat Struct Biol. 2003 Oct;10(10):826-30
pubmed: 14502270
Methods Enzymol. 1982;85 Pt B:164-81
pubmed: 7121269
Methods Enzymol. 2011;487:431-63
pubmed: 21187234
Biophys J. 2011 Jul 6;101(1):1-11
pubmed: 21723809
EMBO J. 2007 Jan 10;26(1):265-74
pubmed: 17213877
Trends Biotechnol. 2001 Jun;19(6):211-6
pubmed: 11356282
Am J Physiol Cell Physiol. 2019 Oct 1;317(4):C714-C718
pubmed: 31339771
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14593-8
pubmed: 26553992
Curr Biol. 1997 Feb 1;7(2):R112-8
pubmed: 9081660
Proc Natl Acad Sci U S A. 1980 Dec;77(12):7209-13
pubmed: 6938966
Biophys J. 2013 Nov 19;105(10):2374-84
pubmed: 24268149
Nature. 1999 Aug 5;400(6744):590-3
pubmed: 10448864
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1796-E1804
pubmed: 28223517
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13726-31
pubmed: 10570140
Biochemistry. 1997 Nov 18;36(46):14037-43
pubmed: 9369475
Traffic. 2016 Aug;17(8):860-71
pubmed: 27061900
Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):433-40
pubmed: 10836496
Biochemistry. 2003 Aug 5;42(30):9160-6
pubmed: 12885250
Nat Cell Biol. 2003 Nov;5(11):980-6
pubmed: 14578909
Nat Struct Mol Biol. 2012 Feb 12;19(3):299-306
pubmed: 22343723
Biopolymers. 2016 Aug;105(8):483-91
pubmed: 27061920
Chem Rev. 2020 Jan 8;120(1):5-35
pubmed: 31689091
Biochemistry. 2013 Jul 9;52(27):4710-22
pubmed: 23725637
J Muscle Res Cell Motil. 1998 Nov;19(8):877-86
pubmed: 10047987
J Biol Chem. 2014 Aug 22;289(34):23977-91
pubmed: 25006251
Trends Biochem Sci. 2016 Dec;41(12):989-997
pubmed: 27717739
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7211-6
pubmed: 23589853
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8631-6
pubmed: 18552179
Rev Sci Instrum. 2004 Sep;75(9):2787-809
pubmed: 16878180
J Biol Chem. 2000 Jul 14;275(28):21624-30
pubmed: 10781577
Biochemistry. 2001 Oct 23;40(42):12727-37
pubmed: 11601998
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6873-8
pubmed: 15863618
Annu Rev Biochem. 2020 Jun 20;89:667-693
pubmed: 32169021
J Muscle Res Cell Motil. 2000 Feb;21(2):139-51
pubmed: 10961838
J Physiol. 2013 Oct 15;591(20):5187-205
pubmed: 23878374
J Biol Chem. 1982 Mar 10;257(5):2432-7
pubmed: 6460759
J Physiol. 1992;451:247-78
pubmed: 1403812
J Cell Sci. 2012 Apr 1;125(Pt 7):1627-32
pubmed: 22566666
Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1883-93
pubmed: 15647164
Dev Cell. 2015 May 26;33(4):401-12
pubmed: 25936506
J Biol Chem. 1992 Feb 5;267(4):2459-66
pubmed: 1733945
J Mol Biol. 2016 May 8;428(9 Pt B):1927-46
pubmed: 26827725
Nat Methods. 2012 Oct;9(10):1013-9
pubmed: 22941363
J Biol Chem. 2019 Feb 1;294(5):1554-1567
pubmed: 30518549
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14272-7
pubmed: 26578772
J Biol Chem. 2009 Jan 23;284(4):2138-49
pubmed: 19008235
J Muscle Res Cell Motil. 2017 Aug;38(3-4):275-289
pubmed: 28918606
Methods Enzymol. 2009;455:157-92
pubmed: 19289206
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1891-6
pubmed: 21245357
J Physiol. 2015 Aug 1;593(15):3313-32
pubmed: 26041599
J Biol Chem. 1998 Oct 16;273(42):27404-11
pubmed: 9765269
J Biol Chem. 2001 Feb 2;276(5):2998-3003
pubmed: 11042210