Concurrent cavitary pulmonary tuberculosis and COVID-19 pneumonia with in vitro immune cell anergy.


Journal

Infection
ISSN: 1439-0973
Titre abrégé: Infection
Pays: Germany
ID NLM: 0365307

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 24 06 2020
accepted: 02 01 2021
pubmed: 18 1 2021
medline: 26 11 2021
entrez: 17 1 2021
Statut: ppublish

Résumé

Tuberculosis (TB) is top infectious disease killer caused by a single organism responsible for 1.5 million deaths in 2018. Both COVID-19 and the pandemic response are risking to affect control measures for TB and continuity of essential services for people affected by this infection in western countries and even more in developing countries. Knowledge about concomitant pulmonary TB and COVID-19 is extremely limited. The double burden of these two diseases can have devastating effects. Here, we describe from both the clinical and the immunological point of view a case of a patient with in vitro immune cell anergy affected by bilateral cavitary pulmonary TB and subsequent COVID-19-associated pneumonia with a worst outcome. COVID-19 can be a precipitating factor in TB respiratory failure and, during ongoing SARS-COV-2 pandemic, clinicians must be aware of this possible co-infection in differential diagnosis of patients with active TB and new or worsening chest imaging.

Identifiants

pubmed: 33454928
doi: 10.1007/s15010-021-01576-y
pii: 10.1007/s15010-021-01576-y
pmc: PMC7811686
doi:

Types de publication

Case Reports Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1061-1064

Subventions

Organisme : Ministero della Salute (IT)
ID : Ricerca Corrente, Research programme n.4: tuberculosis.

Informations de copyright

© 2021. Springer-Verlag GmbH, DE part of Springer Nature.

Références

Dara M, Sotgiu G, Reichler MR, Chiang CY, Chee CBE, Migliori GB. New diseases and old threats: lessons from tuberculosis for the COVID-19 response. Int J Tuberc Lung Dis. 2020;24:544–5.
doi: 10.5588/ijtld.20.0151
Motta I, Centis R, D’Ambrosio L, Garcıa-Garcıa J, Goletti D, Gualano G, et al. Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology. 2020. https://doi.org/10.1016/j.pulmoe.2020.05.002 (Online ahead of print).
doi: 10.1016/j.pulmoe.2020.05.002 pubmed: 32411943 pmcid: 7221402
Ong CWM, Goletti D. Impact of the global COVID-19 outbreak on the management of other communicable diseases. Int J Tuberc Lung Dis. 2020;2:547–8.
doi: 10.5588/ijtld.20.0140
Low JG, Lee CC, Leo YS, Low JG, Lee CC, Leo YS. Severe acute respiratory syndrome and pulmonary tuberculosis. Clin Infect Dis. 2004;38:e123–5.
doi: 10.1086/421396
Mendy J, Jarju S, Heslop R, Bojang AL, Kampmann B, Sutherland JS. Changes in mycobacterium tuberculosis-specific immunity with influenza co-infection at time of TB diagnosis. Front Immunol. 2019;4:3093.
doi: 10.3389/fimmu.2018.03093
Redford PS, Mayer-Barber KD, McNab FW, Stavropoulos E, Wack A, Sher A, et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J Infect Dis. 2014;209:270–4.
doi: 10.1093/infdis/jit424
Walaza S, Cohen C, Tempia S, Moyes J, Nguweneza A, Madhi SA, et al. Influenza and tuberculosis co-infection: a systematic review. Influen Other Respir Viruses. 2020;14:77–91.
doi: 10.1111/irv.12670
Chen Y, Wang Y, Fleming J, Yu Y, Gu Y, Yu Y, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. MedRxiv. 2020. https://doi.org/10.1101/2020.03.10.20033795 .
doi: 10.1101/2020.03.10.20033795 pubmed: 33354688 pmcid: 7755150
Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV infection functionally impairs mycobacterium tuberculosis-specific CD4 and CD8 T-Cell responses. J Virol. 2009;93:5.
Esmail H, Riou C, Bruyn ED, Lai RP, Harley YXR, Meintjes G, et al. The immune response to mycobacterium tuberculosis in HIV-1-coinfected persons. Annu Rev Immunol. 2018;36:603–38.
doi: 10.1146/annurev-immunol-042617-053420
Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33.
doi: 10.1038/s41392-020-0148-4
Weiskopf D, Schmitz K, Raadsen MP, Grifoni A, Okba NMA, Hendeman H, et al. Phenotype of SARS-CoV-2-specific T-cells in COVID-19 patients with acute respiratory distress syndrome. MedRxiv. 2020. https://doi.org/10.1101/2020.04.11.20062349 .
doi: 10.1101/2020.04.11.20062349 pubmed: 32511572 pmcid: 7274253
Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Tang F, et al. Emerg. Infect. Dis. 2006;12:707–9.
doi: 10.3201/eid1204.050264
Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol. 2002;169:4288–97.
doi: 10.4049/jimmunol.169.8.4288
Auld SC, Lee SH, Click ES, Miramontes R, Day CL, Ghandi NR, et al. IFN-γ release assay result is associated with disease site and death in active tuberculosis. Ann Am ThoracSoc. 2016;13:2151–8.
doi: 10.1513/AnnalsATS.201606-482OC
Boyer-Suavet S, Cremoni M, Dupeyrat T, Zorzi K, Brglez V, Benzaken S, et al. Functional immune assay using interferon-gamma could predict infectious events in end-stage kidney disease. Clinica Chimica Acta. 2020;502:287–92.
doi: 10.1016/j.cca.2019.11.018
Petruccioli E, Petrone L, Vanini V, Sampaolesi A, Gualano G, et al. IFNγ/TNFα specific-cells and effector memory phenotype associate with active tuberculosis. J Infect. 2013;66:475–86.
doi: 10.1016/j.jinf.2013.02.004
Moskophidis D, Lechner F, Pircher H, Zinkernagel R. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;62:758–61.
doi: 10.1038/362758a0
Garcia S, DiSanto J, Stockinger B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity. 1999;11:163–71.
doi: 10.1016/S1074-7613(00)80091-6
Mariotti S, Teloni R, Iona E, Fattorini L, Giannoni F, Romagnoli G, et al. Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. Eur J Immunol. 2002;32:3050–8.
doi: 10.1002/1521-4141(200211)32:11<3050::AID-IMMU3050>3.0.CO;2-K

Auteurs

Maria Musso (M)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy. maria.musso@inmi.it.

Francesco Di Gennaro (F)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Gina Gualano (G)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Silvia Mosti (S)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Carlotta Cerva (C)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Saeid Najafi Fard (SN)

Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy.

Raffaella Libertone (R)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Virginia Di Bari (V)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Massimo Cristofaro (M)

Diagnostic Imaging Unit, National Institute of Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy.

Roberto Tonnarini (R)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Concetta Castilletti (C)

Laboratory of Virology, National Institute of Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy.

Delia Goletti (D)

Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy.

Fabrizio Palmieri (F)

Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH