Mobility costs and energy uptake mediate the effects of morphological traits on species' distribution and abundance.

capital–income breeder continuum distribution–abundance relationship metabolic ecology population density propensity for nectar foraging range size resource availability size–abundance relationship thermal melanism hypothesis wingbeat frequency

Journal

Ecology
ISSN: 1939-9170
Titre abrégé: Ecology
Pays: United States
ID NLM: 0043541

Informations de publication

Date de publication:
10 2020
Historique:
received: 23 11 2019
revised: 21 04 2020
accepted: 06 05 2020
entrez: 18 1 2021
pubmed: 19 1 2021
medline: 24 2 2021
Statut: ppublish

Résumé

Individuals of large or dark-colored ectothermic species often have a higher reproduction and activity than small or light-colored ones. However, investments into body size or darker colors should negatively affect the fitness of individuals as they increase their growth and maintenance costs. Thus, it is unlikely that morphological traits directly affect species' distribution and abundance. Yet, this simplification is frequently made in trait-based ecological analyses. Here, we integrated the energy allocation strategies of species into an ecophysiological framework to explore the mechanisms that link species' morphological traits and population dynamics. We hypothesized that the effects of morphological traits on species' distribution and abundance are not direct but mediated by components of the energy budget and that species can allocate more energy towards dispersal and reproduction if they compensate their energetic costs by reducing mobility costs or increasing energy uptake. To classify species' energy allocation strategies, we used easily measured proxies for the mobility costs and energy uptake of butterflies that can be also applied to other taxa. We demonstrated that contrasting effects of morphological traits on distribution and abundance of butterfly species offset each other when species' energy allocation strategies are not taken into account. Larger and darker butterfly species had wider distributions and were more abundant if they compensated the investment into body size and color darkness (i.e., melanin) by reducing their mobility costs or increasing energy uptake. Adults of darker species were more mobile and foraged less compared to lighter colored ones, if an investment into melanin was indirectly compensated via a size-dependent reduction of mobility costs or increase of energy uptake. Our results indicate that differences in the energy allocations strategies of species account for a considerable part of the variation in species' distribution and abundance that is left unexplained by morphological traits alone and ignoring these differences can lead to false mechanistic conclusions. Therefore, our findings highlight the potential of integrating proxies for species' energy allocation strategies into trait-based models not only for understanding the physiological mechanisms underlying variation in species' distribution and abundance, but also for improving predictions of the population dynamics of species.

Identifiants

pubmed: 33460060
doi: 10.1002/ecy.3121
doi:

Banques de données

Dryad
['10.5061/dryad.0k6djh9x5']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e03121

Subventions

Organisme : Stifterverband
Organisme : Google
Organisme : Federal Office for the Environment

Informations de copyright

© 2020 The Authors. Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America.

Références

Angert, A. L., L. G. Crozier, L. J. Rissler, S. E. Gilman, J. J. Tewksbury, and A. J. Chunco. 2011. Do species’ traits predict recent shifts at expanding range edges? Ecology Letters 14:677–689.
Angilletta, M. J., B. S. Cooper, M. S. Schuler, and J. G. Boyles. 2010. The evolution of thermal physiology in endotherms. Frontiers in Bioscience E 2:861–881.
Arrese, E. L., and J. L. Soulages. 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55:207–225.
Bartholomew, G. A., and T. M. Casey. 1978. Oxygen consumption of moths during rest, pre‐flight warm‐up, and flight in relation to body size and wing morphology. Journal of Experimental Biology 76:11–25.
Bergmann, C. 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien, Göttingen, Germany.
Betts, C. R., and R. J. Wootton. 1988. Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology 138:271–288.
Bink, F. A. 1992. Ecologische Atlas van de Dagvlinders van Noordwest Europa. Fontaine Uitgevers B.V, Amsterdam, The Netherlands.
Blackburn, T. M., V. K. Brown, B. M. Doube, J. J. D. Greenwood, J. H. Lawton, and N. E. Stork. 1993. The relationship between abundance and body size in natural animal assemblages. Journal of Animal Ecology 62:519–528.
Blackburn, T. M., P. Cassey, and K. J. Gaston. 2006. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology 75:1426–1439.
Boggs, C. L. 2009. Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23:27–37.
Boggs, C. L., and K. D. Freeman. 2005. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144:353–361.
Bolnick, D. I. et al. 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution 26:183–192.
Brändle, M., and R. Brandl. 2001. Distribution, abundance and niche breadth of birds: scale matters. Global Ecology and Biogeography 10:173–177.
Bräu, M., R. Bolz, H. Kolbeck, A. Nummer, J. Voith, and W. Wolf. 2014. Tagfalter in Bayern. Ulmer E, Stuttgart, Germany.
Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–1789.
Buckley, L. B. 2008. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. American Naturalist 171:E1–E19.
Buckley, L. B., and J. G. Kingsolver. 2019. Environmental variability shapes evolution, plasticity and biogeographic responses to climate change. Global Ecology and Biogeography 28:1456–1468.
Buckley, L. B., M. C. Urban, M. J. Angilletta, L. G. Crozier, L. J. Rissler, and M. W. Sears. 2010. Can mechanism inform species’ distribution models? Ecology Letters 13:1041–1054.
Casey, T. M., M. L. May, and K. R. Morgan. 1985. Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. Journal of Experimental Biology 116:271–289.
Chown, S. L., and K. J. Gaston. 2010. Body size variation in insects: a macroecological perspective. Biological Reviews 85:139–169.
Clusella‐Trullas, S., J. H. van Wyk, and J. R. Spotila. 2007. Thermal melanism in ectotherms. Journal of Thermal Biology 32:235–245.
Clutton‐Brock, T. H., and G. A. Parker. 1992. Potential reproductive rates and the operation of sexual selection. Quarterly Review of Biology 67:437–456.
Corben, H. C. 1983. Wing‐beat frequencies, wing‐areas and masses of flying insects and hummingbirds. Journal of Theoretical Biology 102:611–623.
Curtis, R. J., T. M. Brereton, R. L. H. Dennis, C. Carbone, and N. J. B. Isaac. 2015. Butterfly abundance is determined by food availability and is mediated by species traits. Journal of Applied Ecology 52:1676–1684.
Damuth, J. 1981. Population density and body size in mammals. Nature 290:699–700.
Darveau, C.‐A., P. W. Hochachka, K. C. Welch, D. W. Roubik, and R. K. Suarez. 2005. Allometric scaling of flight energetics in Panamanian orchid bees: a comparative phylogenetic approach. Journal of Experimental Biology 208:3581–3591.
Estrada, A., I. Morales‐Castilla, P. Caplat, and R. Early. 2016. Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution 31:190–203.
Friess, N., M. M. Gossner, W. W. Weisser, R. Brandl, and M. Brändle. 2017. Habitat availability drives the distribution–abundance relationship in phytophagous true bugs in managed grasslands. Ecology 98:2561–2573.
Full, R. J. 1997. Invertebrate locomotor systems. Pages ??–?? in W. H. Dantzler, editor. Handbook of physiology. Oxford University Press.853–930. Oxford, UK.
Gaston, K. J., and J. H. Lawton. 1990. Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos 58:329–335.
Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Science 293:2248–2251.
Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage, and J. H. Brown. 2002. Effects of size and temperature on developmental time. Nature 417:70–73.
Günter, E., and E. Rennwald. 1991a. Die Schmetterlinge Baden‐Württembergs. Band 1. Ulmer E, Stuttgart, Germany.
Günter, E., and E. Rennwald. 1991b. Die Schmetterlinge Baden‐Württembergs. Band 2. Ulmer E, Stuttgart, Germany.
Heidrich, L., N. Friess, K. Fiedler, M. Brändle, A. Hausmann, R. Brandl, and D. Zeuss. 2018. The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude. Global Ecology and Biogeography 27:407–416.
Heinrich, B. 2013. The hot‐blooded insects: strategies and mechanisms of thermoregulation. Springer, Berlin, Germany.
Hill, C. J., and N. E. Pierce. 1989. The effect of adult diet on the biology of butterflies. Oecologia 81:249–257.
Honěk, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492.
Kalmus, H. 1941. Physiology and ecology of cuticle colour in insects. Nature 148:428–431.
Kearney, M., and W. Porter. 2009. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters 12:334–350.
Kim, W., T. Gilet, and J. W. Bush. 2011. Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences USA 108:16618–16621.
Kingsolver, J. G. 1995. Fitness consequences of seasonal polymorphism in western white butterflies. Evolution 49:942–954.
Krenn, H. W. 2010. Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annual Review of Entomology 55:307–327.
Lefcheck, J. S. 2017. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573–579.
Leighton, G. R. M., P. S. Hugo, A. Roulin, and A. Amar. 2016. Just Google it: Assessing the use of Google images to describe geographical variation in visible traits of organisms. Methods in Ecology and Evolution 7:1060–1070.
Llandres, A. L., G. M. Marques, J. L. Maino, S. A. L. M. Kooijman, M. R. Kearney, and J. Casas. 2015. A dynamic energy budget for the whole life‐cycle of holometabolous insects. Ecological Monographs 85:353–371.
MacLean, S. A., and S. R. Beissinger. 2017. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta‐analysis. Global Change Biology 23:4094–4105.
Memmott, J., P. G. Craze, N. M. Waser, and M. V. Price. 2007. Global warming and the disruption of plant–pollinator interactions. Ecology Letters 10:710–717.
Nagy, K. A., I. A. Girard, and T. K. Brown. 1999. Energetics of free‐ranging mammals, reptiles, and birds. Annual review of Nutrition 19:247–277.
Niven, J. E., and J. P. W. Scharlemann. 2005. Do insect metabolic rates at rest and during flight scale with body mass? Biology Letters 1:346–349.
Ohgushi, T., O. Schmitz, and R. D. Holt. 2012. Trait‐mediated indirect interactions: ecological and evolutionary perspectives. Cambridge University Press, Cambridge, UK.
Pélisson, P.‐F., M.‐C. Bel‐Venner, D. Giron, F. Menu, and S. Venner. 2013. From income to capital breeding: when diversified strategies sustain species coexistence. PLoS ONE 8:e76086.
Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, R Core Team. 2017. nlme: linear and nonlinear mixed effects models. R package version 3.1‐313. CRAN.R‐project.org/package=nlme
Pinkert, S., R. Brandl, and D. Zeuss. 2016. Colour lightness of dragonfly assemblages across North America and Europe. Ecography 40:1110–1117.
Pinkert, S., N. Friess, D. Zeuss, M. M. Gossner, R. Brandl, and S. Brunzel. 2020. Mobility costs and energy uptake mediate the effects of morphological traits on species’ distribution and abundance. Dryad Dataset. https://doi.org/10.5061/dryad.0k6djh9x5
Pinkert, S., and D. Zeuss. 2018. Thermal biology: melanin‐based energy harvesting across the tree of life. Current Biology 28:887–889.
Revell, L. J. 2017. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217–233.
Roff, D. A., and D. J. Fairbairn. 2013. The costs of being dark: The genetic basis of melanism and its association with fitness‐related traits in the sand cricket. Journal of Evolutionary Biology 26:1406–1416.
Schweiger, O., A. Harpke, M. Wiemers, and J. Settele. 2014. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367:65–84.
Shelomi, M. 2012. Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist 180:511–519.
Shelomi, M., and D. Zeuss. 2017. Bergmann’s and Allen’s rules in native European and Mediterranean Phasmatodea. Frontiers in Ecology and Evolution 5:25.
Shipley, B. 2004. Analysing the allometry of multiple interacting traits. Perspectives in Plant Ecology, Evolution and Systematics 6:235–241.
Stelbrink, P., S. Pinkert, S. Brunzel, J. Kerr, C. W. Wheat, R. Brandl, and D. Zeuss. 2019. Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports 9:1760.
Stephens, P. A., I. L. Boyd, J. M. McNamara, and A. I. Houston. 2009. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90:2057–2067.
Stevens, V. M., A. Trochet, H. van Dyck, J. Clobert, and M. Baguette. 2012. How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecology Letters 15:74–86.
Talloen, W., H. van Dyck, and L. Lens. 2004. The cost of melanization: Butterfly wing coloration under environmental stress. Evolution 58:360–366.
Tammaru, T., and E. Haukioja. 1996. Capital breeders and income breeders among Lepidoptera: consequences to population dynamics. Oikos 77:561–564.
Tiple, A. D., A. M. Khurad, and R. L. H. Dennis. 2009. Adult butterfly feeding–nectar flower associations: Constraints of taxonomic affiliation, butterfly, and nectar flower morphology. Journal of Natural History 43:855–884.
Tolman, T., and R. Lewington. 2008. Collins butterfly guide: the most complete field guide to the butterflies of Britain and Europe. Third edition. Harper Collins Publisher, London, UK.
True, J. R. 2003. Insect melanism: the molecules matter. Trends in Ecology & Evolution 18:640–647.
Urbanek, S. 2013. png: Read and write PNG images. R package version 0.1‐7. CRAN.R‐project.org/package=png
Vainio, L., H. Hakkarainen, M. J. Rantala, and J. Sorvari. 2004. Individual variation in immune function in the ant Formica exsecta: Effects of the nest, body size and sex. Evolutionary Ecology 18:75–84.
Violle, C., M.‐L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116:882–892.
Wasserthal, L. T. 1975. The role of butterfly wings in regulation of body temperature. Journal of Insect Physiology 21:1921–1930.
White, E. P., S. K. M. Ernest, A. J. Kerkhoff, and B. J. Enquist. 2007. Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22:323–330.
Willner, W. 2016. Taschenlexikon der Schmetterlinge Europas. Quelle & Meyer, Wiebelsheim, Germany.
Zeuss, D., R. Brandl, M. Brändle, C. Rahbek, and S. Brunzel. 2014. Global warming favours light‐coloured insects in Europe. Nature Communications 5:4847.
Zeuss, D., S. Brunzel, and R. Brandl. 2017. Environmental drivers of voltinism and body size in insect assemblages across Europe. Global Ecology and Biogeography 26:154–165.
Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer, New York, New York, USA.

Auteurs

Stefan Pinkert (S)

Faculty of Biology, Animal Ecology, Philipps-University Marburg, Marburg, 35043, Germany.
Faculty of Landscape Architecture, Biodiversity and Conservation, University of Applied Sciences Erfurt, Erfurt, 99085, Germany.

Nicolas Friess (N)

Faculty of Geography, Environmental Informatics, Philipps-University Marburg, Marburg, 35043, Germany.

Dirk Zeuss (D)

Faculty of Geography, Environmental Informatics, Philipps-University Marburg, Marburg, 35043, Germany.

Martin M Gossner (MM)

Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland.

Roland Brandl (R)

Faculty of Biology, Animal Ecology, Philipps-University Marburg, Marburg, 35043, Germany.

Stefan Brunzel (S)

Faculty of Landscape Architecture, Biodiversity and Conservation, University of Applied Sciences Erfurt, Erfurt, 99085, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH