Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy.
Journal
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
ISSN: 1558-0210
Titre abrégé: IEEE Trans Neural Syst Rehabil Eng
Pays: United States
ID NLM: 101097023
Informations de publication
Date de publication:
2021
2021
Historique:
pubmed:
19
1
2021
medline:
1
7
2021
entrez:
18
1
2021
Statut:
ppublish
Résumé
With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.
Identifiants
pubmed: 33460382
doi: 10.1109/TNSRE.2021.3051958
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM