Prediction of Acoustic Residual Inhibition of Tinnitus Using a Brain-Inspired Spiking Neural Network Model.

amplitude modulated individualised treatment prediction residual inhibition spiking neural network tinnitus

Journal

Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646

Informations de publication

Date de publication:
05 Jan 2021
Historique:
received: 03 12 2020
revised: 23 12 2020
accepted: 02 01 2021
entrez: 20 1 2021
pubmed: 21 1 2021
medline: 21 1 2021
Statut: epublish

Résumé

Auditory Residual Inhibition (ARI) is a temporary suppression of tinnitus that occurs in some people following the presentation of masking sounds. Differences in neural response to ARI stimuli may enable classification of tinnitus and a tailored approach to intervention in the future. In an exploratory study, we investigated the use of a brain-inspired artificial neural network to examine the effects of ARI on electroencephalographic function, as well as the predictive ability of the model. Ten tinnitus patients underwent two auditory stimulation conditions (constant and amplitude modulated broadband noise) at two time points and were then characterised as responders or non-responders, based on whether they experienced ARI or not. Using a spiking neural network model, we evaluated concurrent neural patterns generated across space and time from features of electroencephalographic data, capturing the neural dynamic changes before and after stimulation. Results indicated that the model may be used to predict the effect of auditory stimulation on tinnitus on an individual basis. This approach may aid in the development of predictive models for treatment selection.

Identifiants

pubmed: 33466500
pii: brainsci11010052
doi: 10.3390/brainsci11010052
pmc: PMC7824871
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Auckland Medical Research Foundation
ID : 1118018
Organisme : Eisdell Moore Centre
ID : 3718360

Références

Front Neuroinform. 2015 Jun 18;9:16
pubmed: 26150785
Hear Res. 2013 Jan;295:161-71
pubmed: 23088832
Trends Hear. 2019 Jan-Dec;23:2331216519833841
pubmed: 30871419
Eur Radiol. 2010 Mar;20(3):696-703
pubmed: 19760238
BMC Neurosci. 2012 Jan 04;13:3
pubmed: 22217183
Front Aging Neurosci. 2019 Mar 19;11:53
pubmed: 30941029
Ear Hear. 2020 Aug 03;42(1):130-141
pubmed: 32769434
Hum Brain Mapp. 2016 Aug;37(8):2717-35
pubmed: 27091485
JMIR Res Protoc. 2019 Jan 09;8(1):e12270
pubmed: 30626571
Restor Neurol Neurosci. 2007;25(3-4):251-9
pubmed: 17943003
Prog Brain Res. 2007;166:525-36
pubmed: 17956816
Int J Hyg Environ Health. 2009 Jan;212(1):37-44
pubmed: 18243788
Behav Res Ther. 1995 Mar;33(3):335-43
pubmed: 7726811
Front Aging Neurosci. 2017 May 19;9:130
pubmed: 28579955
PLoS One. 2012;7(5):e36222
pubmed: 22574141
Biol Psychiatry. 2003 Oct 15;54(8):862-5
pubmed: 14550687
Curr Biol. 2015 May 4;25(9):1208-14
pubmed: 25913402
J Pers Soc Psychol. 1988 Jun;54(6):1063-70
pubmed: 3397865
Neural Netw. 2014 Apr;52:62-76
pubmed: 24508754
J Assoc Res Otolaryngol. 2012 Aug;13(4):561-71
pubmed: 22526737
Front Neurol. 2015 Feb 17;6:29
pubmed: 25741316
J Speech Hear Disord. 1990 Aug;55(3):439-53
pubmed: 2381186
Front Neurosci. 2014 Sep 25;8:284
pubmed: 25309309
Brain Res. 2012 Nov 16;1485:10-21
pubmed: 22579727
Neural Comput. 2009 May;21(5):1259-76
pubmed: 19718815
Neurosci Biobehav Rev. 2017 Jun;77:286-300
pubmed: 28389343
Biol Psychiatry. 1993 Jul 1-15;34(1-2):84-90
pubmed: 8373941
Eur J Neurosci. 2005 Sep;22(5):1135-40
pubmed: 16176355
Neural Netw. 2013 May;41:188-201
pubmed: 23340243
Exp Brain Res. 2012 Sep;221(3):345-50
pubmed: 22782483
PLoS One. 2008;3(11):e3720
pubmed: 19005566
Hear Res. 2019 Apr;375:1-13
pubmed: 30822633
J Clin Neurol. 2009 Mar;5(1):11-9
pubmed: 19513328
Eur J Neurosci. 2011 Sep;34(5):718-31
pubmed: 21848924
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S9
pubmed: 16723012
Am J Audiol. 2014 Sep;23(3):303-8
pubmed: 25026936
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499

Auteurs

Philip J Sanders (PJ)

Section of Audiology, The University of Auckland, Auckland 1023, New Zealand.
Eisdell Moore Centre, Auckland 1023, New Zealand.
Centre for Brain Research, The University of Auckland, Auckland 1023, New Zealand.

Zohreh G Doborjeh (ZG)

Section of Audiology, The University of Auckland, Auckland 1023, New Zealand.
Eisdell Moore Centre, Auckland 1023, New Zealand.
Centre for Brain Research, The University of Auckland, Auckland 1023, New Zealand.

Maryam G Doborjeh (MG)

Information Technology and Software Engineering Department, Auckland University of Technology, Auckland 1010, New Zealand.

Nikola K Kasabov (NK)

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
Intelligent Systems Research Centre, Ulster University, Derry/Londonderry BT48 7JL, UK.
Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand.

Grant D Searchfield (GD)

Section of Audiology, The University of Auckland, Auckland 1023, New Zealand.
Eisdell Moore Centre, Auckland 1023, New Zealand.
Centre for Brain Research, The University of Auckland, Auckland 1023, New Zealand.

Classifications MeSH