Comparison of Dual-Energy X-ray Absorptiometry (DXA) Versus a Multi-Frequency Bioelectrical Impedance (InBody 770) Device for Body Composition Assessment after a 4-Week Hypoenergetic Diet.
body composition
diet
exercise
exercise-trained
fat mass
fat-free mass
Journal
Journal of functional morphology and kinesiology
ISSN: 2411-5142
Titre abrégé: J Funct Morphol Kinesiol
Pays: Switzerland
ID NLM: 101712257
Informations de publication
Date de publication:
25 Apr 2019
25 Apr 2019
Historique:
received:
02
04
2019
revised:
20
04
2019
accepted:
24
04
2019
entrez:
20
1
2021
pubmed:
25
4
2019
medline:
25
4
2019
Statut:
epublish
Résumé
The purpose of this investigation was to compare two different methods of assessing body composition (i.e., a multi-frequency bioelectrical impedance analysis (MF-BIA) and dual-energy x-ray absorptiometry (DXA)) over a four-week treatment period in exercise-trained men and women. Subjects were instructed to reduce their energy intake while maintaining the same exercise regimen for a period of four weeks. Pre and post assessments for body composition (i.e., fat-free mass, fat mass, percent body fat) were determined via the MF-BIA and DXA. On average, subjects reduced their energy intake by ~18 percent. The MF-BIA underestimated fat mass and percentage body fat and overestimated fat-free mass in comparison to the DXA. However, when assessing the change in fat mass, fat-free mass or percent body fat, there were no statistically significant differences between the MF-BIA vs. DXA. Overall, the change in percent body fat using the DXA vs. the MF-BIA was -1.3 ± 0.9 and -1.4 ± 1.8, respectively. Our data suggest that when tracking body composition over a period of four weeks, the MF-BIA may be a viable alternative to the DXA in exercise-trained men and women.
Identifiants
pubmed: 33467338
pii: jfmk4020023
doi: 10.3390/jfmk4020023
pmc: PMC7739224
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):269-278
pubmed: 29349935
J Strength Cond Res. 2015 Apr;29(4):918-25
pubmed: 25353076
Basic Life Sci. 1993;60:125-8
pubmed: 8110091
J Int Soc Sports Nutr. 2017 Jun 14;14:16
pubmed: 28630601
J Cachexia Sarcopenia Muscle. 2018 Dec;9(7):1272-1274
pubmed: 30697981
Nutr Diet. 2018 Apr;75(2):219-225
pubmed: 29280547
J Int Soc Sports Nutr. 2016 Jun 02;13:24
pubmed: 27274715
J Strength Cond Res. 2020 Mar;34(3):678-688
pubmed: 29927888
J Int Soc Sports Nutr. 2013 Apr 19;10(1):22
pubmed: 23601452
J Int Soc Sports Nutr. 2018 Jul 31;15(1):37
pubmed: 30064450
Int J Obes (Lond). 2007 Feb;31(2):279-84
pubmed: 16788568
J Physiol Anthropol Appl Human Sci. 2004 May;23(3):93-9
pubmed: 15187381
J Int Soc Sports Nutr. 2014 May 12;11:19
pubmed: 24834017
Obes Surg. 2014 Sep;24(9):1476-80
pubmed: 24464546
Obesity (Silver Spring). 2008 Mar;16(3):700-5
pubmed: 18239555
Appl Physiol Nutr Metab. 2013 Jan;38(1):27-32
pubmed: 23368825
J Int Soc Sports Nutr. 2015 Oct 20;12:39
pubmed: 26500462
Nutr Res. 2012 Jul;32(7):479-85
pubmed: 22901555
Nutrients. 2018 Jun 07;10(6):
pubmed: 29880741
Am J Clin Nutr. 1992 Jul;56(1):19-28
pubmed: 1609756
Metabolism. 1994 Dec;43(12):1481-7
pubmed: 7990700
J Hum Nutr Diet. 2015 Aug;28(4):390-400
pubmed: 25039938
Nutr Clin Pract. 2019 Jun;34(3):421-427
pubmed: 30251390
Eur J Appl Physiol. 2009 Jan;105(1):119-30
pubmed: 18936958
Eur J Clin Nutr. 2013 Jan;67 Suppl 1:S54-9
pubmed: 23299872
J Strength Cond Res. 2020 Jun;34(6):1700-1708
pubmed: 29794894
Nutr Diabetes. 2012 Aug 13;2:e40
pubmed: 23448804
Eur J Appl Physiol. 2013 Sep;113(9):2331-41
pubmed: 23748419
Int J Sport Nutr Exerc Metab. 2018 Sep 1;28(5):542-546
pubmed: 29345171
J Int Soc Sports Nutr. 2016 Jan 16;13:3
pubmed: 26778925
Clin Nutr ESPEN. 2018 Dec;28:141-147
pubmed: 30390872
J Int Soc Sports Nutr. 2014 Nov 18;11(1):54
pubmed: 25429252
Am J Hum Biol. 2018 Jan;30(1):
pubmed: 28987018