Clinical impact of COVID-19 on patients with cancer treated with immune checkpoint inhibition.
immunotherapy
Journal
Journal for immunotherapy of cancer
ISSN: 2051-1426
Titre abrégé: J Immunother Cancer
Pays: England
ID NLM: 101620585
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
accepted:
09
12
2020
entrez:
20
1
2021
pubmed:
21
1
2021
medline:
2
2
2021
Statut:
ppublish
Résumé
Patients with cancer who are infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more likely to develop severe illness and die compared with those without cancer. The impact of immune checkpoint inhibition (ICI) on the severity of COVID-19 illness is unknown. The aim of this study was to investigate whether ICI confers an additional risk for severe COVID-19 in patients with cancer. We analyzed data from 110 patients with laboratory-confirmed SARS-CoV-2 while on treatment with ICI without chemotherapy in 19 hospitals in North America, Europe and Australia. The primary objective was to describe the clinical course and to identify factors associated with hospital and intensive care (ICU) admission and mortality. Thirty-five (32%) patients were admitted to hospital and 18 (16%) died. All patients who died had advanced cancer, and only four were admitted to ICU. COVID-19 was the primary cause of death in 8 (7%) patients. Factors independently associated with an increased risk for hospital admission were ECOG ≥2 (OR 39.25, 95% CI 4.17 to 369.2, p=0.0013), treatment with combination ICI (OR 5.68, 95% CI 1.58 to 20.36, p=0.0273) and presence of COVID-19 symptoms (OR 5.30, 95% CI 1.57 to 17.89, p=0.0073). Seventy-six (73%) patients interrupted ICI due to SARS-CoV-2 infection, 43 (57%) of whom had resumed at data cut-off. COVID-19-related mortality in the ICI-treated population does not appear to be higher than previously published mortality rates for patients with cancer. Inpatient mortality of patients with cancer treated with ICI was high in comparison with previously reported rates for hospitalized patients with cancer and was due to COVID-19 in almost half of the cases. We identified factors associated with adverse outcomes in ICI-treated patients with COVID-19.
Sections du résumé
BACKGROUND
Patients with cancer who are infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more likely to develop severe illness and die compared with those without cancer. The impact of immune checkpoint inhibition (ICI) on the severity of COVID-19 illness is unknown. The aim of this study was to investigate whether ICI confers an additional risk for severe COVID-19 in patients with cancer.
METHODS
We analyzed data from 110 patients with laboratory-confirmed SARS-CoV-2 while on treatment with ICI without chemotherapy in 19 hospitals in North America, Europe and Australia. The primary objective was to describe the clinical course and to identify factors associated with hospital and intensive care (ICU) admission and mortality.
FINDINGS
Thirty-five (32%) patients were admitted to hospital and 18 (16%) died. All patients who died had advanced cancer, and only four were admitted to ICU. COVID-19 was the primary cause of death in 8 (7%) patients. Factors independently associated with an increased risk for hospital admission were ECOG ≥2 (OR 39.25, 95% CI 4.17 to 369.2, p=0.0013), treatment with combination ICI (OR 5.68, 95% CI 1.58 to 20.36, p=0.0273) and presence of COVID-19 symptoms (OR 5.30, 95% CI 1.57 to 17.89, p=0.0073). Seventy-six (73%) patients interrupted ICI due to SARS-CoV-2 infection, 43 (57%) of whom had resumed at data cut-off.
INTERPRETATION
COVID-19-related mortality in the ICI-treated population does not appear to be higher than previously published mortality rates for patients with cancer. Inpatient mortality of patients with cancer treated with ICI was high in comparison with previously reported rates for hospitalized patients with cancer and was due to COVID-19 in almost half of the cases. We identified factors associated with adverse outcomes in ICI-treated patients with COVID-19.
Identifiants
pubmed: 33468556
pii: jitc-2020-001931
doi: 10.1136/jitc-2020-001931
pmc: PMC7817383
pii:
doi:
Substances chimiques
Immune Checkpoint Inhibitors
0
Types de publication
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Commentaires et corrections
Type : ErratumIn
Type : ErratumIn
Informations de copyright
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
Déclaration de conflit d'intérêts
Competing interests: MiM: consultant/advisor for Bristol Myers Squibb, MSD, Novartis, Roche, Pierre Fabre. AANR: fellowship funding from Alamos Gold Inc. JMG: project focused consultant/advisor for Merck/Pfizer, MSD, Amgen, Novartis, Bristol Myers Squibb and Pierre Fabre; travel support from Ultrasun, L’Oreal, MSD, Bristol Myers Squibb and Pierre Fabre outside of the submitted work. TPM: fellowship funding from Alamos Gold Inc. SDS: consultant/advisor for Janssens, Novartis and Sanofi. AMM: consultant/advisor to Bristol Myers Squibb, MSD, Novartis, Roche, Pierre Fabre and QBiotics. MSC: consultant/advisor for Bristol Myers Squibb, MSD, Amgen, Novartis, Pierre Fabre, Roche, Sanofi, Merck, Ideaya, Regeneron, Nektar, Eisai; honoraria from Bristol Myers Squibb, MSD, Novartis. CB: consultant/advisor for Amgen, Bristol Myers Squibb, MSD, Novartis Pharma AG, Regeneron Pharmaceuticals Inc, Roche Pharma, Sanofi Aventis. LiZ: consultant/advisor for Bristol Myers Squibb, Novartis, Pierre Fabre, Sunpharma, Sanofi, MSD; research funding from Novartis; travel support from Bristol Myers Squibb, Pierre Fabre, Sanofi, Amgen, Novartis, Sunpharma. DS: consultant/advisor for Roche/Genentech, Novartis, Bristol Myers Squibb, MSD, Merck Serono, Amgen, Immunocore, Incyte, 4SC, Pierre Fabre, Mologen and Sanofi/Regeneron; honoraria from Roche/Genentech, Novartis, MSD, Bristol Myers Squibb, Merck Serono, Amgen, Immunocore, Incyte, 4SC, Pierre Fabre, Sysmex, Grünenthal Group, Agenus, Array BioPharma, AstraZeneca, LEO Pharma, Pfizer, Philogen, Regeneron and Mologen; travel/accommodation expenses from Roche/Genentech, Novartis, Bristol Myers Squibb, Merck Serono, Amgen and Merck; speakers bureau for Novartis, Bristol Myers Squibb, MSD, Amgen, Incyte, Pierre Fabre and Roche; research funding from Novartis and Bristol Myers Squibb; steering committee membership for Novartis, MSD and Bristol Myers Squibb. AH: consultant/advisor for Amgen, Bristol Myers Squibb, MSD/Merck, Pfizer, NeraCare, Novartis, Philogen, Pierre Fabre, Roche and Regeneron/Sanofi-Genzyme. RD: intermittent, project focused consulting and/or advisory relationships with Novartis, MSD, Bristol-Myers Squibb, Roche, Amgen, Takeda, Pierre Fabre, Sun Pharma, Sanofi, Catalym, Second Genome, Regeneron, Alligator, MaxiVAX SA and touchIME outside the submitted work. JH: consultant/advisor for AIMM, AchillesTx, Bristol Myers Squibb, BioNTech, GSK, Immunocore, Merck Serono, MSD, Neogene Tx, Novartis, Pfizer, Roche/Genentech, Sanofi, Seattle Genetics, Third Rock Ventures, Vaximm; research grants from Amgen, Bristol Myers Squibb, MSD, BioNTech, Novartis. CUB: consultant/advisor for Bristol Myers Squibb, MSD, Roche, Novartis, GSK, AZ, Pfizer, Lilly, GenMab, Pierre Fabre, Third Rock Ventures; research funding from Bristol Myers Squibb, Novartis, NanoString; stock ownership: Uniti Cars; co-founder: Immagene BV. CR: consultant/advisor for Bristol Myers Squibb, MSD, Roche, Novartis, CureVac, Sanofi, Pierre Fabre. RJS: consultant/advisor for Asana Biosciences, Astrazeneca, Bristol Myers Squibb, Eisai, Iovnace, Pfizer, Merck, Novartis, Replimune; research funding: Amgen, Merck. PAA: consultant/advisory for Bristol Myers Squibb, Roche/Genentech, MSD, Novartis, Array, Merck Serono, Pierre Fabre, Incyte, Medimmune, AstraZeneca, Syndax, Sun Pharma, Sanofi, Idera, Ultimovacs, Sandoz, Immunocore, 4SC, Alkermes, Italfarmaco, Nektar, Boehringer-Ingelheim, Eisai, Regeneron; research funding from Bristol Myers Squibb, Roche/Genentech, Array and travel support from MSD. FSH: consultancy/advisory for Bristol Myers Squibb, Merck, EMD Serono, Novartis, Surface, Compass Therapeutics, Apricity, Aduro, Sanofi, Pionyr, 7 Hills Pharma, Torque, Rheos, Kairos, Bicara, Psioxus Therapeutics, Pieris Pharmaceutical, Zumutor, Corner Therapeutics, Idera, Takeda, Genentech/Roche, Bioentre, Gossamer. KPMS: consulting/advisory for Bristol Myers Squibb, MSD, Abbvie, Pierre Fabre, Novartis; honoraria received from Novartis, Roche, MSD (all paid to institution). KLR: consultant/advisor for Teladoc. OER: consultant/advisor for Merck, Celgene, Five Prime, GSK, Bayer, Roche/Genentech, Puretech, Imvax, Sobi; research support from Merck; speaker for activities supported by educational grants from Bristol Myers Squibb and Merck; patent “Methods of using pembrolizumab and trebananib” pending. PCL: consultant/advisor for Bristol Myers Squibb, MSD, Pierre Fabre, Novartis, Amgen and Roche; travel support from Bristol Myers Squibb and MSD; research support from Bristol Myers Squibb. MaM: consultant advisor for Bristol Myers Squibb, MSD, Novartis, Roche, PierreFabre. GVL: consultant/advisor for Aduro Biotech Inc, Amgen Inc, Array Biopharma inc, Boehringer Ingelheim International GmbH, Bristol Myers Squibb, Highlight Therapeutics SL, MSD, Novartis Pharma AG, QBiotics Group Limited, Regeneron Pharmaceuticals Inc, SkylineDX BV, all declarations of interest are outside of the submitted work. AR, IPS, CT, CAT, JMG, MHT, SN, LZ, PB, AE, NP, MGV, JB, SR, TC, JL, AV, MOB, ME, LP, PQ, CP, WHM, RDC and SL have no conflict of interest.
Références
N Engl J Med. 2020 Apr 30;382(18):1708-1720
pubmed: 32109013
Ann Intern Med. 2020 Sep 1;173(5):362-367
pubmed: 32491919
Lancet Oncol. 2020 Jul;21(7):893-903
pubmed: 32479790
Cancer Discov. 2018 Sep;8(9):1069-1086
pubmed: 30115704
Cancer Discov. 2020 Jul;10(7):935-941
pubmed: 32357994
Cancer Discov. 2020 Aug;10(8):1121-1128
pubmed: 32398243
J Thorac Oncol. 2020 Jun;15(6):e83-e85
pubmed: 32243919
Cell Mol Immunol. 2020 May;17(5):533-535
pubmed: 32203188
Lancet Oncol. 2020 Jul;21(7):914-922
pubmed: 32539942
JAMA. 2020 Jun 2;323(21):2191-2192
pubmed: 32338732
Lancet. 2020 Mar 28;395(10229):1033-1034
pubmed: 32192578
JAMA. 2020 Apr 7;323(13):1239-1242
pubmed: 32091533
Oncotarget. 2017 Dec 14;8(69):114268-114280
pubmed: 29371985
Nature. 2006 Feb 9;439(7077):682-7
pubmed: 16382236
Cancer Discov. 2020 Jun;10(6):783-791
pubmed: 32345594
Lancet. 2020 Jun 20;395(10241):1919-1926
pubmed: 32473682
Clin Infect Dis. 2020 Jul 20;:
pubmed: 32687150
Int J Antimicrob Agents. 2020 Mar;55(3):105924
pubmed: 32081636
Lancet. 2020 Jun 20;395(10241):1907-1918
pubmed: 32473681
Cancers (Basel). 2020 Feb 27;12(3):
pubmed: 32120803
Lancet Oncol. 2020 Oct;21(10):1309-1316
pubmed: 32853557
Nat Med. 2020 Aug;26(8):1218-1223
pubmed: 32581323
Cytokine Growth Factor Rev. 2020 Jun;53:25-32
pubmed: 32446778
N Engl J Med. 2020 Jul 17;:
pubmed: 32678530
Ann Oncol. 2020 Aug;31(8):1088-1089
pubmed: 32330541
Lancet Respir Med. 2020 May;8(5):475-481
pubmed: 32105632