Palladium-Catalyzed Difunctionalization of 1,3-Diene with Amine and Disilane under a Mild Re-oxidation System.

difunctionalization molecular oxygen oxidative amination palladium regio- and stereoselective

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
12 Mar 2021
Historique:
received: 05 01 2021
revised: 19 01 2021
pubmed: 21 1 2021
medline: 21 1 2021
entrez: 20 1 2021
Statut: ppublish

Résumé

A highly regioselective and stereoselective difunctionalization reaction of 1,3-diene with amine and disilane to form C-N and C-Si bonds via a one-step Pd/Cu/O

Identifiants

pubmed: 33470481
doi: 10.1002/chem.202100043
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4888-4892

Subventions

Organisme : New Energy and Industrial Technology Development Organization
ID : 14100355-0

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

For reviews on difunctionalization of 1,3-dienes, see:
Y. Xiong, Y. Sun, G. Zhang, Tetrahedron Lett. 2018, 59, 347-355;
X. Wu, L. Z. Gong, Synthesis 2019, 51, 122-134;
G. J. P. Perry, T. Jia, D. J. Procter, ACS Catal. 2020, 10, 1485-1499;
G. Li, X. Huo, X. Jiang, W. Zhang, Chem. Soc. Rev. 2020, 49, 2060-2118.
For selected reports of difunctionalization reaction of 1,3-dienes to form two C−C bonds, see:
L. Liao, R. Jana, K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2011, 133, 5784-5787;
M. S. McCammant, L. Liao, M. S. Sigman, J. Am. Chem. Soc. 2013, 135, 4167-4170;
B. J. Stokes, L. Liao, A. M. De Andrade, Q. Wang, M. S. Sigman, Org. Lett. 2014, 16, 4666-4669;
X. Wu, H. C. Lin, M. L. Li, L. L. Li, Z. Y. Han, L. Z. Gong, J. Am. Chem. Soc. 2015, 137, 13476-13479;
Y. Xiong, G. Zhang, J. Am. Chem. Soc. 2018, 140, 2735-2738;
J. L. Schwarz, H. M. Huang, T. O. Paulisch, F. Glorius, ACS Catal. 2020, 10, 1621-1627.
For selected reports of difunctionalization reaction of 1,3-dienes to form two C−N bonds, see:
R. G. Cornwall, B. Zhao, Y. Shi, Org. Lett. 2013, 15, 796-799;
Z. Wu, K. Wen, J. Zhang, W. Zhang, Org. Lett. 2017, 19, 2813-2816;
M. S. Wu, T. Fan, S. S. Chen, Z. Y. Han, L. Z. Gong, Org. Lett. 2018, 20, 2485-2489.
For selected reports of difunctionalization reaction of 1,3-dienes to form C−O and C−N bonds, see:
D. J. Michaelis, M. A. Ischay, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 6610-6615;
H. C. Shen, Y. F. Wu, Y. Zhang, L. F. Fan, Z. Y. Han, L. Z. Gong, Angew. Chem. Int. Ed. 2018, 57, 2372-##2376-2376;
Angew. Chem. 2018, 130, 2396-2400;
K. Wen, Z. Wu, B. Huang, Z. Ling, I. D. Gridnev, W. Zhang, Org. Lett. 2018, 20, 1608-1612;
B. N. Hemric, A. W. Chen, Q. Wang, ACS Catal. 2019, 9, 10070-10076.
For selected reports of difunctionalization reaction of 1,3-dienes to form C−C and C−B bonds, see:
S. R. Sardini, M. K. Brown, J. Am. Chem. Soc. 2017, 139, 9823-9826;
T. Jia, Q. He, R. E. Ruscoe, A. P. Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2018, 57, 11305-11309;
Angew. Chem. 2018, 130, 11475-11479;
T. Jia, M. J. Smith, A. P. Pulis, G. J. P. Perry, D. J. Procter, ACS Catal. 2019, 9, 6744-6750.
For selected reports of difunctionalization reaction of 1,3-dienes to form C−C and C−N bonds, see:
H. M. Huang, P. Bellotti, P. M. Pflüger, J. L. Schwarz, B. Heidrich, F. Glorius, J. Am. Chem. Soc. 2020, 142, 10173-10183;
H. M. Huang, M. Koy, E. Serrano, P. M. Pflüger, J. L. Schwarz, F. Glorius, Nat. Catal. 2020, 3, 393-400.
N. L. Morrow, Environ. Health Perspect. 1990, 86, 7-8.
Y. Liu, Y. Xie, H. Wang, H. Huang, J. Am. Chem. Soc. 2016, 138, 4314-4317.
S. Nii, J. Terao, N. Kambe, J. Org. Chem. 2000, 65, 5291-5297.
Y. Yang, R. J. Song, X. H. Ouyang, C. Y. Wang, J. H. Li, S. Luo, Angew. Chem. Int. Ed. 2017, 56, 7916-7919;
Angew. Chem. 2017, 129, 8024-8027.
Related our patents, see:
Y. Obora, S. Shimada, K. Sato, JP 2017088507, 2017;
Y. Obora, X. Lin, S. Shimada, K. Sato, JP 2018095613, 2018.
Y. Obora, Y. Tsuji, T. Kawamura, J. Am. Chem. Soc. 1993, 115, 10414-10415.
Y. Shimizu, Y. Obora, Y. Ishii, Org. Lett. 2010, 12, 1372-1374.
S. Nakai, M. Matsui, Y. Shimizu, Y. Adachi, Y. Obora, J. Org. Chem. 2015, 80, 7317-7320.
We conducted computational calculations of the Gibbs free energy (kcal mol−1) between Z and E isomers of 4 a at the M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d,p) level of theory with Gaussian 16. All calculated data involve Gibbs energy using thermal corrections at 343 K with CPCM model (DMF solvent). The results showed that Z isomer is thermodynamically more stable than E isomer (see the Supporting Information).
For detailed reaction conditions, see the Supporting Information.
V. Kotov, C. C. Scarborough, S. S. Stahl, Inorg. Chem. 2007, 46, 1910-1923.
Deposition Number 2044491 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Auteurs

Kazuyuki Torii (K)

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.

Atsushi Kawakubo (A)

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.

Xianjin Lin (X)

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.

Tetsuaki Fujihara (T)

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.

Tatsuo Yajima (T)

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.

Yasushi Obora (Y)

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.

Classifications MeSH