Prenatal origins of neuropsychiatric diseases.
advanced magnetic resonance imaging
developmental origins
neuropsychiatric disease
prenatal
Journal
Acta paediatrica (Oslo, Norway : 1992)
ISSN: 1651-2227
Titre abrégé: Acta Paediatr
Pays: Norway
ID NLM: 9205968
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
28
01
2021
received:
05
01
2021
accepted:
18
01
2021
pubmed:
22
1
2021
medline:
9
6
2021
entrez:
21
1
2021
Statut:
ppublish
Résumé
The main objective is to review the available evidence in the literature for developmental origins of neuropsychiatric diseases and their underlying mechanisms. We also probe emerging cutting-edge prenatal MR imaging tools and their future role in advancing our understanding the prenatal footprints of neuropsychiatric disorders. Both human and animal studies support early intrauterine origins of neuropsychiatric disease, particularly autism spectrum disorders (ASD), attention and hyperactivity disorders, schizophrenia, depression, anxiety and mood disorders. Specific mechanisms of intrauterine injury include infection, inflammation, hypoxia, hypoperfusion, ischaemia polysubstance use/abuse, maternal mental health and placental dysfunction. There is ample evidence to suggest developmental vulnerability of the foetal brain to intrauterine exposures that increases and individual's risk for neuropsychiatric disease, especially the risk of ASD, depression and anxiety. Elucidating the exact timing and mechanisms of injury can be difficult and require novel, non-invasive approaches to the study emerging structural and functional brain development of the foetus. Clinical care should both emphasise maternal health during pregnancy, as well as close, continued monitoring for at risk offspring throughout young adulthood for the early identification and treatment of neuropsychiatric diseases.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1741-1749Informations de copyright
©2021 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Références
Gata-Garcia A, Diamond B. Maternal antibody and ASD: clinical data and animal models. Front Immunol. 2019;10:1129.
Shi L, Smith SE, Malkova N, Tse D, Su Y, Patterson PH. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun. 2009;23(1):116-123.
Bauman MD, Iosif AM, Smith SE, Bregere C, Amaral DG, Patterson PH. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry. 2014;75(4):332-341.
Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev. 2009;33(7):1061-1079.
Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016;353(6301):772-777.
Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics. 2015;10(12):1143-1155.
O'Loughlin E, Pakan JMP, Yilmazer-Hanke D, McDermott KW. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J Neuroinflammation. 2017;14(1):212.
Dufour-Rainfray D, Vourc'h P, Tourlet S, Guilloteau D, Chalon S, Andres CR. Fetal exposure to teratogens: evidence of genes involved in autism. Neurosci Biobehav Rev. 2011;35(5):1254-1265.
Giannopoulou I, Pagida MA, Briana DD, Panayotacopoulou MT. Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones (Athens). 2018;17(1):25-32.
Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128(2):344-355.
Boksa P, El-Khodor BF. Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev. 2003;27(1-2):91-101.
Reinebrant HE, Wixey JA, Buller KM. Neonatal hypoxia-ischaemia disrupts descending neural inputs to dorsal raphe nuclei. Neuroscience. 2013;248:427-435.
Buller KM, Wixey JA, Pathipati P, et al. Selective losses of brainstem catecholamine neurons after hypoxia-ischemia in the immature rat pup. Pediatr Res. 2008;63(4):364-369.
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24-41.
Blows WT. Neurotransmitters of the brain: serotonin, noradrenaline (norepinephrine), and dopamine. J Neurosci Nurs. 2000;32(4):234-238.
Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology. 2009;57(7-8):579-589.
Chiriboga CA. Fetal alcohol and drug effects. Neurologist. 2003;9(6):267-279.
Zhang W, Finik J, Dana K, Glover V, Ham J, Nomura Y. Prenatal depression and infant temperament: the moderating role of placental gene expression. Infancy. 2018;23(2):211-231.
Lin Q, Hou XY, Yin XN, et al. Prenatal exposure to environmental tobacco smoke and hyperactivity behavior in Chinese young children. Int J Environ Res Public Health. 2017;14:10.
Suter MA, Abramovici AR, Griffin E, et al. In utero nicotine exposure epigenetically alters fetal chromatin structure and differentially regulates transcription of the glucocorticoid receptor in a rat model. Birth Defects Res A Clin Mol Teratol. 2015;103(7):583-588.
Warton FL, Meintjes EM, Warton CMR, et al. Prenatal methamphetamine exposure is associated with reduced subcortical volumes in neonates. Neurotoxicol Teratol. 2018;65:51-59.
Warton FL, Taylor PA, Warton CMR, et al. Prenatal methamphetamine exposure is associated with corticostriatal white matter changes in neonates. Metab Brain Dis. 2018;33(2):507-522.
Hepper PG, Dornan JC, Lynch C. Fetal brain function in response to maternal alcohol consumption: early evidence of damage. Alcohol Clin Exp Res. 2012;36(12):2168-2175.
Sayal K, Heron J, Golding J, Emond A. Prenatal alcohol exposure and gender differences in childhood mental health problems: a longitudinal population-based study. Pediatrics. 2007;119(2):e426-e434.
Pearson RM, Evans J, Kounali D, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years. JAMA Psychiatry. 2013;70(12):1312-1319.
Schulz KM, Andrud KM, Burke MB, et al. The effects of prenatal stress on alpha4 beta2 and alpha7 hippocampal nicotinic acetylcholine receptor levels in adult offspring. Dev Neurobiol. 2013;73(11):806-814.
Keller J, Gomez R, Williams G, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22(4):527-536.
Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology. 2010;35(1):141-153.
Wu Y, Lu YC, Jacobs M, et al. Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. JAMA Netw Open. 2020;3(1):e1919940.
Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114(5-6):397-407.
Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141-169.
Velasquez JC, Goeden N, Bonnin A. Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci. 2013;7:47.
Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6):479-488.
Schlotz W, Phillips DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun. 2009;23(7):905-916.
Geraghty AA, Lindsay KL, Alberdi G, McAuliffe FM, Gibney ER. Nutrition during pregnancy impacts offspring's epigenetic status-evidence from human and animal studies. Nutr Metab Insights. 2015;8(Suppl 1):41-47.
Jiang HY, Xu LL, Shao L, et al. Maternal infection during pregnancy and risk of autism spectrum disorders: A systematic review and meta-analysis. Brain Behav Immun. 2016;58:165-172.
Guma E, Plitman E, Chakravarty MM. The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev. 2019;104:141-157.
Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154-162.
Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933-939.
Wong H, Hoeffer C. Maternal IL-17A in autism. Exp Neurol. 2018;299 Pt A:228-240.
Braunschweig D, Krakowiak P, Duncanson P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013;3:e277.
Piras IS, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico AM. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with Autism Spectrum Disorder. Brain Behav Immun. 2014;38:91-99.
Hornig M, Bresnahan MA, Che X, et al. Prenatal fever and autism risk. Mol Psychiatry. 2018;23(3):759-766.
Chen SW, Zhong XS, Jiang LN, et al. Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: A systematic review and meta-analysis. Behav Brain Res. 2016;296:61-69.
Wu S, Ding Y, Wu F, et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:322-332.
Gustavson K, Ask H, Ystrom E, et al. Maternal fever during pregnancy and offspring attention deficit hyperactivity disorder. Sci Rep. 2019;9(1):9519.
Ji Y, Azuine RE, Zhang Y, et al. Association of cord plasma biomarkers of in utero acetaminophen exposure with risk of attention-deficit/hyperactivity disorder and autism spectrum disorder in childhood. JAMA Psychiatry. 2020;77(2):180. https://doi.org/10.1001/jamapsychiatry.2019.3259
Ystrom E, Gustavson K, Brandlistuen RE, et al. Prenatal exposure to acetaminophen and risk of ADHD. Pediatrics. 2017;140(5):e20163840. https://doi.org/10.1542/peds.2016-3840
Polanska K, Jurewicz J, Hanke W. Exposure to environmental and lifestyle factors and attention-deficit / hyperactivity disorder in children - a review of epidemiological studies. Int J Occup Med Environ Health. 2012;25(4):330-355.
Franz AP, Bolat GU, Bolat H, et al. Attention-deficit/hyperactivity disorder and very preterm/very low birth weight: A meta-analysis. Pediatrics. 2018;141(1):e20171645. https://doi.org/10.1542/peds.2017-1645
Brown AS. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol. 2012;72(10):1272-1276.
Selten JP, Frissen A, Lensvelt-Mulders G, Morgan VA. Schizophrenia and 1957 pandemic of influenza: meta-analysis. Schizophr Bull. 2010;36(2):219-228.
Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45(2):189-192.
Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61(8):774-780.
Ellman LM, Yolken RH, Buka SL, Torrey EF, Cannon TD. Cognitive functioning prior to the onset of psychosis: the role of fetal exposure to serologically determined influenza infection. Biol Psychiatry. 2009;65(12):1040-1047.
Brown AS, Hooton J, Schaefer CA, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161(5):889-895.
Shi J, Levinson DF, Duan J, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753-757.
Lipner E, Murphy SK, Ellman LM. Prenatal maternal stress and the cascade of risk to schizophrenia spectrum disorders in offspring. Curr Psychiatry Rep. 2019;21(10):99.
Marques AH, Bjorke-Monsen AL, Teixeira AL, Silverman MN. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Res. 2015;1617:28-46.
Hay RE, Reynolds JE, Grohs MN, et al. Amygdala-prefrontal structural connectivity mediates the relationship between prenatal depression and behavior in preschool boys. J Neurosci. 2020;40(36):6969-6977.
Scheinost D, Spann MN, McDonough L, Peterson BS, Monk C. Associations between different dimensions of prenatal distress, neonatal hippocampal connectivity, and infant memory. Neuropsychopharmacology. 2020;45(8):1272-1279.
Gentile S. Untreated depression during pregnancy: Short- and long-term effects in offspring. A systematic review. Neuroscience. 2017;342:154-166.
El Marroun H, White TJ, van der Knaap NJ, et al. Prenatal exposure to selective serotonin reuptake inhibitors and social responsiveness symptoms of autism: population-based study of young children. Br J Psychiatry. 2014;205(2):95-102.
Capron LE, Ramchandani PG, Glover V. Maternal prenatal stress and placental gene expression of NR3C1 and HSD11B2: The effects of maternal ethnicity. Psychoneuroendocrinology. 2018;87:166-172.
De Asis-Cruz J, Krishnamurthy D, Zhao L, et al. Association of prenatal maternal anxiety with fetal regional brain connectivity. JAMA Netw Open. 2020;3(12):e2022349. https://doi.org/10.1001/jamanetworkopen.2020.22349
Reissland N, Froggatt S, Reames E, Girkin J. Effects of maternal anxiety and depression on fetal neuro-development. J Affect Disord. 2018;241:469-474.
Li F, Wu D, Lui S, Gong Q, Sweeney JA. Clinical strategies and technical challenges in psychoradiology. Neuroimaging Clin N Am. 2020;30(1):1-13.
Busatto GF. Structural and functional neuroimaging studies in major depressive disorder with psychotic features: a critical review. Schizophr Bull. 2013;39(4):776-786.
Frazier JA, Chiu S, Breeze JL, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry. 2005;162(7):1256-1265.
O'Connor S, Agius M. A systematic review of structural and functional MRI differences between psychotic and nonpsychotic depression. Psychiatr Danub. 2015;27(Suppl 1):S235-S239.
O'Donoghue S, Holleran L, Cannon DM, McDonald C. Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. J Affect Disord. 2017;209:217-228.
Kline-Fath BM, Bulas D, Bahado-Sing. Fundamentals of Advanced Fetal Imaging: Ultrasound and MRI. 2nd ed. Philadelphia, PA: Wolters Kluwer Health; 2020.
Andescavage N, Dahdouh S, Jacobs M, et al. In vivo textural and morphometric analysis of placental development in healthy & growth-restricted pregnancies using magnetic resonance imaging. Pediatr Res. 2019;85(7):974-981.
You W, Andescavage NN, Kapse K, Donofrio MT, Jacobs M, Limperopoulos C. Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI. Radiology. 2020;294(1):141-148.
Zun ZSA, Niforatos-Andescavage N, Bauer S, et al. Three-Dimensional Placental Perfusion Imaging Using Velocity-Selective Arterial Spin Labeling. Singapore: International Society for Magnetic Resonance in Medicine; 2016.
Andescavage NN, du Plessis A, McCarter R, et al. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2017;27(11):5274-5283.
Clouchoux C, Kudelski D, Gholipour A, et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct. 2012;217(1):127-139.
Limperopoulos C, Tworetzky W, McElhinney DB, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121(1):26-33.
Pradhan S, Kapse K, Jacobs M, et al. Non-invasive measurement of biochemical profiles in the healthy fetal brain. NeuroImage. 2020;219:117016.
Thomason ME, Dassanayake MT, Shen S, et al. Cross-hemispheric functional connectivity in the human fetal brain. Sci Transl Med. 2013;5(173):173ra24.
Schafer RJ, Lacadie C, Vohr B, et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain. 2009;132(Pt 3):661-670.
Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577-580.
Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care. 2011;41(6):158-176.