Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation.
Animals
Calcification, Physiologic
/ drug effects
Cell Adhesion
/ drug effects
Cell Differentiation
/ drug effects
Cell Line, Tumor
Cell Movement
/ drug effects
Cells, Cultured
Histatins
/ pharmacology
Humans
Mesenchymal Stem Cells
/ cytology
Mice
Osteoblasts
/ cytology
Osteogenesis
/ drug effects
Signal Transduction
/ drug effects
bone
differentiation
mesenchymal
osteogenic
salivary peptide
wound healing
Journal
Journal of tissue engineering and regenerative medicine
ISSN: 1932-7005
Titre abrégé: J Tissue Eng Regen Med
Pays: England
ID NLM: 101308490
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
12
01
2021
accepted:
13
01
2021
pubmed:
23
1
2021
medline:
29
1
2022
entrez:
22
1
2021
Statut:
ppublish
Résumé
Histatin-1 is a salivary antimicrobial peptide involved in the maintenance of enamel and oral mucosal homeostasis. Moreover, Histatin-1 has been shown to promote re-epithelialization in soft tissues, by stimulating cell adhesion and migration in oral and dermal keratinocytes, gingival and skin fibroblasts, endothelial cells and corneal epithelial cells. The broad-spectrum activity of Histatin-1 suggests that it behaves as a universal wound healing promoter, although this is far from being clear yet. Here, we report that Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. Specifically, Histatin-1 promoted cell adhesion, spreading, and migration of SAOS-2 cells and MC3T3-E1 preosteoblasts in vitro, when placed on a fibronectin matrix. Besides, Histatin-1 induced the expression of osteogenic genes, including osteocalcin, osteopontin, and Runx2, and increased both activity and protein levels of alkaline phosphatase. Furthermore, Histatin-1 promoted mineralization in vitro, as it augmented the formation of calcium deposits in both SAOS-2 and MC3T3-E1 cells. Mechanistically, although Histatin-1 failed to activate ERK1/2, FAK, and Akt, which are signaling proteins associated with osteogenic differentiation or cell migration, it triggered nuclear relocalization of β-catenin. Strikingly, the effects of Histatin-1 were recapitulated in cells that are nonosteogenically committed, since it promoted surface adhesion, migration, and the acquisition of osteogenic markers in primary mesenchymal cells derived from the apical papilla and dental pulp. Collectively, these observations indicate that Histatin-1 is a novel osteogenic factor that promotes bone cell differentiation, surface adhesion and migration, as crucial events required for bone tissue regeneration.
Substances chimiques
Histatins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
336-346Subventions
Organisme : Comisión Nacional de Investigación Científica y Tecnológica
Organisme : Fondo Nacional de Desarrollo Científico y Tecnológico
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Aydin, S., & Sahin, F. (2019). Stem cells derived from dental tissues. Advances in Experimental Medicine & Biology, 1144, 123-132.
Caceres, M., Oyarzun, A., & Smith, P. C. (2014). Defective wound-healing in aging gingival tissue. Journal of Dental Research, 93, 691-697.
Castro, M., Torres, P., Solano, L., Cordova, L. A., & Torres, V. A. (2019). Histatin-1 counteracts the cytotoxic and antimigratory effects of zoledronic acid in endothelial and osteoblast-like cells. Journal of Periodontology, 90, 766-774.
Clark, D., Nakamura, M., Miclau, T., & Marcucio, R. (2017). Effects of aging on fracture healing. Current Osteoporosis Reports, 15, 601-608.
Dickson, K., Katzman, S., Delgado, E., & Contreras, D. (1994). Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clinical Orthopaedics and Related Research, 302, 189-193.
Ghiasi, M. S., Chen, J., Vaziri, A., Rodriguez, E. K., & Nazarian, A. (2017). Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Reports, 6, 87-100.
Gong, Y., Li, S., Zeng, W., Yu, J., Chen, Y., & Yu, B. (2019). Controlled in vivo bone formation and vascularization using ultrasound-triggered release of recombinant vascular endothelial growth factor from poly(D,L-lactic-co-glycolicacid) microbubbles. Frontiers in Pharmacology, 10, 413.
James, A. W., Lachaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., … Soo, C. (2016). A review of the clinical side effects of bone morphogenetic protein-2. Tissue Engineering Part B Reviews, 22, 284-297.
Khurshid, Z., Najeeb, S., Mali, M., Moin, S. F., Raza, S. Q., Zohaib, S., … Zafar, M. S. (2017). Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal, 25, 25-31.
Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42, 551-555.
Melino, S., Santone, C., Di Nardo, P., & Sarkar, B. (2014). Histatins: Salivary peptides with copper(II)- and zinc(II)-binding motifs: Perspectives for biomedical applications. The FEBS Journal, 281, 657-672.
Mendoza, P., Ortiz, R., Diaz, J., Quest, A. F., Leyton, L., Stupack, D., & Torres, V. A. (2013). Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. Journal of Cell Science, 126, 3835-3847.
Oudhoff, M. J., Blaauboer, M. E., Nazmi, K., Scheres, N., Bolscher, J. G., & Veerman, E. C. (2010). The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biological Chemistry, 391, 541-548.
Oudhoff, M. J., Bolscher, J. G., Nazmi, K., Kalay, H., van 't Hof, W., Amerongen, A. V., & Veerman, E. C. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. The FASEB Journal, 22, 3805-3812.
Oudhoff, M. J., van den Keijbus, P. A., Kroeze, K. L., Nazmi, K., Gibbs, S., Bolscher, J. G., & Veerman, E. C. (2009). Histatins enhance wound closure with oral and non-oral cells. Journal of Dental Research, 88, 846-850.
Oudhoff, M. J., Kroeze, K. L., Nazmi, K., Van den Keijbus, P. A., van 't Hof, W., Fernandez-Borja, M., … Veerman, E. C. (2009). Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: Cyclization of histatin potentiates molar activity 1,000-fold. The FASEB Journal, 23, 3928-3935.
Oydanich, M., Epstein, S. P., Gadaria-Rathod, N., Guers, J. J., Fernandez, K. B., & Asbell, P. A. (2018). In vivo efficacy of histatin-1 in a rabbit animal model. Current Eye Research, 43, 1215-1220.
Reyes, M., Pena-Oyarzun, D., Silva, P., Venegas, S., Criollo, A., & Torres, V. A. (2020). Nuclear accumulation of beta-catenin is associated with endosomal sequestration of the destruction complex and increased activation of Rab5 in oral dysplasia. The FASEB Journal, 34, 4009-4025.
Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34, 166-171.
Sun, W., Shi, A., Ma, D., Bolscher, J. G. M., Nazmi, K., Veerman, E. C. I., … Wu, G. (2020). All-trans retinoic acid and human salivary histatin-1 promote the spreading and osteogenic activities of pre-osteoblasts in vitro. FEBS Open Bio, 10, 396-406.
Sun, P., Shi, A., Shen, C., Liu, Y., Wu, G., & Feng, J. (2020). Human salivary histatin-1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)-induced osteogenesis and angiogenesis. FEBS Open Bio, 10, 1503-1515.
Sybil, D., Jain, V., Mohanty, S., & Akhtar Husain, S. (2020). Oral stem cells in intraoral bone formation. Journal of Oral Biosciences, 62, 36-43.
Teufel, S., & Hartmann, C. (2019). Wnt-signaling in skeletal development. Current Topics in Developmental Biology, 133, 235-279.
Torres, P., Castro, M., Reyes, M., & Torres, V. A. (2018). Histatins, wound healing, and cell migration. Oral Diseases, 24, 1150-1160.
Torres, P., Diaz, J., Arce, M., Silva, P., Mendoza, P., Lois, P., … Torres, V. A. (2017). The salivary peptide histatin-1 promotes endothelial cell adhesion, migration, and angiogenesis. The FASEB Journal, 31, 4946-4958.
Van Dijk, I. A., Beker, A. F., Jellema, W., Nazmi, K., Wu, G., Wismeijer, D., … Stap, J. (2017). Histatin 1 enhances cell adhesion to titanium in an implant integration model. Journal of Dental Research, 96, 430-436.
Van Dijk, I. A., Ferrando, M. L., Van Der Wijk, A. E., Hoebe, R. A., Nazmi, K., De Jonge, W. J., … Stap, J. (2017). Human salivary peptide histatin-1 stimulates epithelial and endothelial cell adhesion and barrier function. The FASEB Journal, 31, 3922-3933.
Van Dijk, I. A., Veerman, E. C. I., Reits, E. A. J., Bolscher, J. G. M., & Stap, J. (2018). Salivary peptide histatin 1 mediated cell adhesion: A possible role in mesenchymal-epithelial transition and in pathologies. Biological Chemistry, 399, 1409-1419.
Wang, H. S., Yang, F. H., Wang, Y. J., Pei, F., Chen, Z., & Zhang, L. (2019). Odontoblastic exosomes attenuate apoptosis in neighboring cells. Journal of Dental Research, 98, 1271-1278.