Tackling microbial threats in agriculture with integrative imaging and computational approaches.

Agriculture Genome-wide association mapping High-throughput phenotyping Image analysis Plant pathogens Sustainability

Journal

Computational and structural biotechnology journal
ISSN: 2001-0370
Titre abrégé: Comput Struct Biotechnol J
Pays: Netherlands
ID NLM: 101585369

Informations de publication

Date de publication:
2021
Historique:
received: 01 09 2020
revised: 08 12 2020
accepted: 13 12 2020
entrez: 25 1 2021
pubmed: 26 1 2021
medline: 26 1 2021
Statut: epublish

Résumé

Pathogens and pests are one of the major threats to agricultural productivity worldwide. For decades, targeted resistance breeding was used to create crop cultivars that resist pathogens and environmental stress while retaining yields. The often decade-long process of crossing, selection, and field trials to create a new cultivar is challenged by the rapid rise of pathogens overcoming resistance. Similarly, antimicrobial compounds can rapidly lose efficacy due to resistance evolution. Here, we review three major areas where computational, imaging and experimental approaches are revolutionizing the management of pathogen damage on crops. Recognizing and scoring plant diseases have dramatically improved through high-throughput imaging techniques applicable both under well-controlled greenhouse conditions and directly in the field. However, computer vision of complex disease phenotypes will require significant improvements. In parallel, experimental setups similar to high-throughput drug discovery screens make it possible to screen thousands of pathogen strains for variation in resistance and other relevant phenotypic traits. Confocal microscopy and fluorescence can capture rich phenotypic information across pathogen genotypes. Through genome-wide association mapping approaches, phenotypic data helps to unravel the genetic architecture of stress- and virulence-related traits accelerating resistance breeding. Finally, joint, large-scale screenings of trait variation in crops and pathogens can yield fundamental insights into how pathogens face trade-offs in the adaptation to resistant crop varieties. We discuss how future implementations of such innovative approaches in breeding and pathogen screening can lead to more durable disease control.

Identifiants

pubmed: 33489007
doi: 10.1016/j.csbj.2020.12.018
pii: S2001-0370(20)30543-2
pmc: PMC7787954
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

372-383

Informations de copyright

© 2020 The Author(s).

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Mol Ecol. 2020 Nov 19;:
pubmed: 33211369
Annu Rev Plant Biol. 2008;59:89-113
pubmed: 18444897
Sci Rep. 2017 Mar 13;7:38837
pubmed: 28287610
Front Plant Sci. 2019 Oct 30;10:1381
pubmed: 31737010
J Evol Biol. 2009 Feb;22(2):245-59
pubmed: 19196383
Plant Methods. 2019 Sep 18;15:109
pubmed: 31548849
Front Plant Sci. 2016 Aug 09;7:1163
pubmed: 27555855
OMICS. 2016 May;20(5):310-24
pubmed: 27195968
Annu Rev Phytopathol. 2019 Aug 25;57:505-529
pubmed: 31470772
Front Plant Sci. 2016 May 10;7:625
pubmed: 27242829
PLoS One. 2016 Aug 29;11(8):e0161887
pubmed: 27571208
Nat Genet. 2018 Mar;50(3):368-374
pubmed: 29434355
Front Plant Sci. 2019 Jul 19;10:845
pubmed: 31379891
Fungal Genet Biol. 2020 Aug;141:103398
pubmed: 32371235
Genetics. 2018 Oct;210(2):517-529
pubmed: 30072376
Plant J. 2019 Jan;97(1):40-55
pubmed: 30444573
Appl Environ Microbiol. 2015 Sep;81(18):6367-79
pubmed: 26150467
ISME J. 2017 May;11(5):1189-1204
pubmed: 28117833
Plant J. 2020 Jul;103(2):903-917
pubmed: 32170798
Front Plant Sci. 2016 Sep 22;7:1419
pubmed: 27713752
Curr Biol. 2018 May 21;28(10):R619-R634
pubmed: 29787730
J Biomol Screen. 2012 Apr;17(4):542-9
pubmed: 22233645
J Vis Exp. 2014 Jul 15;(89):
pubmed: 25077667
Bioengineered. 2019 Dec;10(1):409-424
pubmed: 31502497
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5440-E5449
pubmed: 29848634
Front Plant Sci. 2015 Jan 05;5:734
pubmed: 25601871
Funct Plant Biol. 2009 Nov;36(11):978-989
pubmed: 32688709
Mol Biol Rep. 2012 Apr;39(4):4039-49
pubmed: 21785916
Phytopathology. 2018 May;108(5):568-581
pubmed: 29210601
PLoS Genet. 2018 Sep 28;14(9):e1007637
pubmed: 30265666
BMC Plant Biol. 2020 Aug 27;20(1):398
pubmed: 32854622
Curr Opin Plant Biol. 2017 Aug;38:184-192
pubmed: 28738313
PLoS Comput Biol. 2020 Mar 23;16(3):e1007668
pubmed: 32203545
Ecology. 2020 Feb;101(2):e02924
pubmed: 31660584
Int J Mol Sci. 2012;13(1):427-52
pubmed: 22312262
Front Plant Sci. 2016 Sep 22;7:1377
pubmed: 27713750
PLoS Genet. 2005 Nov;1(5):e60
pubmed: 16292355
Environ Microbiol. 2015 Aug;17(8):2982-92
pubmed: 25845620
New Phytol. 2020 Jun;226(5):1256-1262
pubmed: 31997351
Science. 2017 Jul 7;357(6346):80-83
pubmed: 28684523
Am J Bot. 2012 Feb;99(2):365-71
pubmed: 22268223
New Phytol. 2009;183(1):190-9
pubmed: 19344475
Plant J. 2015 Dec;84(6):1124-36
pubmed: 26561232
Fungal Genet Biol. 2015 Jun;79:8-12
pubmed: 26092783
Int J Mol Sci. 2020 Apr 08;21(7):
pubmed: 32276445
New Phytol. 2016 Jan;209(1):334-42
pubmed: 26295446
New Phytol. 2017 Apr;214(2):619-631
pubmed: 28164301
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7
pubmed: 19474294
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709):
pubmed: 28080995
J Exp Bot. 2013 Oct;64(13):3937-49
pubmed: 23599272
PLoS One. 2017 Nov 15;12(11):e0188106
pubmed: 29141039
PLoS One. 2015 Jan 26;10(1):e0116902
pubmed: 25621489
Curr Opin Plant Biol. 2015 Apr;24:93-9
pubmed: 25733069
Food Chem. 2018 Sep 30;261:103-111
pubmed: 29739570
Front Plant Sci. 2017 Jun 16;8:1072
pubmed: 28670324
Funct Plant Biol. 2016 Feb;44(1):1-9
pubmed: 32480541
Fungal Genet Biol. 2003 Apr;38(3):286-97
pubmed: 12684018
Plant Methods. 2018 Jun 8;14:45
pubmed: 29930695
PLoS Pathog. 2010 Aug 05;6(8):e1001019
pubmed: 20700450
Plant J. 2017 May;90(4):720-737
pubmed: 27870294
New Phytol. 2020 Feb;225(3):1134-1142
pubmed: 31134629
Front Plant Sci. 2019 Apr 24;10:449
pubmed: 31105715
Plant Physiol. 2017 Aug;174(4):2008-2022
pubmed: 28620124
Front Plant Sci. 2017 Oct 10;8:1733
pubmed: 29067032
Genetics. 2017 Nov;207(3):1135-1145
pubmed: 28893854
Plant Dis. 2018 Apr;102(4):760-763
pubmed: 30673396
Trends Biotechnol. 2006 Nov;24(11):490-9
pubmed: 16956681
J Microbiol Methods. 2008 Aug;74(2-3):94-101
pubmed: 18466990
BMC Biol. 2016 Oct 3;14(1):84
pubmed: 27716181
Ecol Appl. 2017 Dec;27(8):2290-2302
pubmed: 28763165
Mol Plant Pathol. 2016 Dec;17(9):1506-1518
pubmed: 27238249
Plant Physiol. 2016 Oct;172(2):650-660
pubmed: 27443602
Front Plant Sci. 2016 Feb 23;7:192
pubmed: 26941759
Plant Genome. 2017 Jul;10(2):
pubmed: 28724075
Mol Plant Microbe Interact. 2019 Jan;32(1):45-55
pubmed: 30418085
New Phytol. 2019 Jul;223(1):293-309
pubmed: 30843213
Nat Rev Genet. 2019 Oct;20(10):567-581
pubmed: 31171865
J Exp Bot. 2006;57(9):2121-32
pubmed: 16714311
Evol Appl. 2016 Feb 24;9(5):709-25
pubmed: 27247621
BMC Plant Biol. 2019 Dec 5;19(1):541
pubmed: 31805861
Fungal Genet Biol. 2015 Jun;79:110-7
pubmed: 26092797
Front Plant Sci. 2017 Sep 27;8:1681
pubmed: 29021803
Trends Biotechnol. 2009 Jun;27(6):342-9
pubmed: 19398140
Ecol Evol. 2018 Dec 26;9(1):275-294
pubmed: 30680113
PLoS One. 2015 Apr 10;10(4):e0123262
pubmed: 25861025
Nature. 2017 Mar 15;543(7645):346-354
pubmed: 28300107
Mol Ecol. 2017 Apr;26(7):2027-2040
pubmed: 27696587
Mol Plant. 2020 Feb 3;13(2):187-214
pubmed: 31981735
Nat Genet. 2006 Aug;38(8):953-6
pubmed: 16832356
Mol Plant Microbe Interact. 2014 Mar;27(3):196-206
pubmed: 24405032
Plant Methods. 2015 Apr 15;11:28
pubmed: 25937826
PLoS Genet. 2019 Oct 18;15(10):e1008223
pubmed: 31626626
Drug Discov Today. 2010 Aug;15(15-16):679-83
pubmed: 20547242
PLoS Pathog. 2016 Oct 12;12(10):e1005939
pubmed: 27732672
PLoS Pathog. 2019 Dec 20;15(12):e1007780
pubmed: 31860693
Evol Lett. 2018 Jul 11;2(4):390-405
pubmed: 30283690
Phytopathology. 2014 Sep;104(9):985-92
pubmed: 24624955
Mol Plant Microbe Interact. 2007 Oct;20(10):1175-82
pubmed: 17918619
BMC Bioinformatics. 2015 May 06;16:143
pubmed: 25943369
Nat Rev Microbiol. 2020 Sep;18(9):539
pubmed: 32601439
Trends Ecol Evol. 2017 Aug;32(8):612-623
pubmed: 28648806
Sensors (Basel). 2011;11(4):3765-79
pubmed: 22163820
Fungal Genet Biol. 2015 Jun;79:33-41
pubmed: 26092788
Front Microbiol. 2017 Jun 28;8:1217
pubmed: 28702023
Metabolites. 2020 Jan 29;10(2):
pubmed: 32013104
Front Plant Sci. 2018 Dec 19;9:1841
pubmed: 30619410
Planta. 2020 Aug 10;252(3):38
pubmed: 32779032
Plant Dis. 2008 Apr;92(4):530-541
pubmed: 30769647
Genetics. 2018 Feb;208(2):779-789
pubmed: 29223971
FEMS Yeast Res. 2014 Nov;14(7):1068-79
pubmed: 25154541
New Phytol. 2020 Jan;225(1):118-125
pubmed: 31225901
Mol Plant Pathol. 2013 Sep;14(7):651-62
pubmed: 23718203
PLoS One. 2019 Feb 27;14(2):e0205083
pubmed: 30811435
PLoS One. 2018 May 10;13(5):e0187470
pubmed: 29746473
Front Plant Sci. 2017 Nov 27;8:2002
pubmed: 29230229
Plant Dis. 2009 Apr;93(4):328-331
pubmed: 30764225
Funct Plant Biol. 2016 Feb;44(1):154-168
pubmed: 32480554
Mol Plant Pathol. 2018 Jan;19(1):3-6
pubmed: 29226559
Plant Cell. 2014 Dec;26(12):4636-55
pubmed: 25501589
Nature. 2017 Feb 2;542(7640):145-146
pubmed: 28179687
Plant Methods. 2015 Feb 13;11:7
pubmed: 25705245
Nature. 2006 Nov 16;444(7117):323-9
pubmed: 17108957
Plant J. 2019 Jan;97(1):164-181
pubmed: 30466152
Science. 2018 May 18;360(6390):739-742
pubmed: 29773744
Pest Manag Sci. 2018 Feb;74(2):302-313
pubmed: 28881414
New Phytol. 2016 Jan;209(1):307-18
pubmed: 26305378
Bioessays. 2016 Jun;38(6):578-86
pubmed: 27062178
Environ Microbiol. 2014 Jun;16(6):1729-40
pubmed: 24000788
Environ Microbiol. 2019 Aug;21(8):2677-2695
pubmed: 30838748
J Mol Biol. 2019 Nov 22;431(23):4645-4655
pubmed: 31260693
Nat Commun. 2014 Oct 08;5:5087
pubmed: 25295980
Phytopathology. 2020 Apr;110(4):881-891
pubmed: 31855502
Front Plant Sci. 2017 Feb 13;8:192
pubmed: 28243250
Plant J. 2013 May;74(3):534-44
pubmed: 23452317
Ecol Lett. 2008 Apr;11(4):327-37
pubmed: 18248450
Plant Methods. 2012 Jan 24;8(1):3
pubmed: 22273513
Theor Appl Genet. 2013 Apr;126(4):867-87
pubmed: 23471459
Curr Opin Plant Biol. 2020 Aug;56:65-73
pubmed: 32480355
Annu Rev Phytopathol. 2005;43:83-116
pubmed: 16078878
J Evol Biol. 2007 Nov;20(6):2371-8
pubmed: 17956398
G3 (Bethesda). 2012 Jan;2(1):29-34
pubmed: 22384379
Nat Protoc. 2015 Aug;10(8):1181-97
pubmed: 26158443

Auteurs

Nikhil Kumar Singh (NK)

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.

Anik Dutta (A)

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland.

Guido Puccetti (G)

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
Syngenta Crop Protection AG, CH-4332 Stein, Switzerland.

Daniel Croll (D)

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.

Classifications MeSH