Structural insights into RNA polymerases of negative-sense RNA viruses.
Journal
Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
accepted:
07
12
2020
pubmed:
27
1
2021
medline:
24
7
2021
entrez:
26
1
2021
Statut:
ppublish
Résumé
RNA viruses include many important human and animal pathogens, such as the influenza viruses, respiratory syncytial virus, Ebola virus, measles virus and rabies virus. The genomes of these viruses consist of single or multiple RNA segments that assemble with oligomeric viral nucleoprotein into ribonucleoprotein complexes. Replication and transcription of the viral genome is performed by ~250-450 kDa viral RNA-dependent RNA polymerases that also contain capping or cap-snatching activity. In this Review, we compare recent high-resolution X-ray and cryoelectron microscopy structures of RNA polymerases of negative-sense RNA viruses with segmented and non-segmented genomes, including orthomyxoviruses, peribunyaviruses, phenuiviruses, arenaviruses, rhabdoviruses, pneumoviruses and paramyxoviruses. In addition, we discuss how structural insights into these enzymes contribute to our understanding of the molecular mechanisms of viral transcription and replication, and how we can use these insights to identify targets for antiviral drug design.
Identifiants
pubmed: 33495561
doi: 10.1038/s41579-020-00501-8
pii: 10.1038/s41579-020-00501-8
pmc: PMC7832423
doi:
Substances chimiques
Viral Proteins
0
DNA-Directed RNA Polymerases
EC 2.7.7.6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
303-318Subventions
Organisme : Wellcome Trust
ID : 206579/Z/17/Z
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : R21 AI147172
Pays : United States
Organisme : Wellcome Trust
ID : 200835/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R009945/1
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Références
Luo, M., Terrell, J. R. & McManus, S. A. Nucleocapsid structure of negative strand RNA virus. Viruses 12, 835 https://doi.org/10.3390/v12080835 (2020).
doi: 10.3390/v12080835
pmcid: 7472042
Ruigrok, R. W., Crepin, T. & Kolakofsky, D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr. Opin. Microbiol. 14, 504–510 (2011).
pubmed: 21824806
doi: 10.1016/j.mib.2011.07.011
Gallagher, J. R., Torian, U., McCraw, D. M. & Harris, A. K. Structural studies of influenza virus RNPs by electron microscopy indicate molecular contortions within NP supra-structures. J. Struct. Biol. 197, 294–307 (2017).
pubmed: 28007449
doi: 10.1016/j.jsb.2016.12.007
Coloma, R. et al. Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Nat. Microbiol. 5, 727–734 (2020).
pubmed: 32152587
doi: 10.1038/s41564-020-0675-3
Te Velthuis, A. J. & Fodor, E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14, 479–493 (2016).
doi: 10.1038/nrmicro.2016.87
Fearns, R. & Plemper, R. K. Polymerases of paramyxoviruses and pneumoviruses. Virus Res. 234, 87–102 (2017).
pubmed: 28104450
pmcid: 5476513
doi: 10.1016/j.virusres.2017.01.008
Liang, B. et al. Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell 162, 314–327 (2015). The first reported structure of a nsNSV RNA polymerase.
pubmed: 26144317
pmcid: 4557768
doi: 10.1016/j.cell.2015.06.018
Morin, B., Rahmeh, A. A. & Whelan, S. P. Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase. EMBO J. 31, 1320–1329 (2012).
pubmed: 22246179
pmcid: 3297992
doi: 10.1038/emboj.2011.483
Olschewski, S., Cusack, S. & Rosenthal, M. The cap-snatching mechanism of bunyaviruses. Trends Microbiol. 28, 293–303 (2020).
pubmed: 31948728
doi: 10.1016/j.tim.2019.12.006
Koppstein, D., Ashour, J. & Bartel, D. P. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res. 43, 5052–5064 (2015).
pubmed: 25901029
pmcid: 4446424
doi: 10.1093/nar/gkv333
Ho, J. S. Y. et al. Hybrid gene origination creates human-virus chimeric proteins during infection. Cell 181, 1502–1517 e1523 (2020).
pubmed: 32559462
pmcid: 7323901
doi: 10.1016/j.cell.2020.05.035
Sutherland, K. A., Collins, P. L. & Peeples, M. E. Synergistic effects of gene-end signal mutations and the M2-1 protein on transcription termination by respiratory syncytial virus. Virology 288, 295–307 (2001).
pubmed: 11601901
doi: 10.1006/viro.2001.1105
Fearns, R. & Collins, P. L. Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J. Virol. 73, 5852–5864 (1999).
pubmed: 10364337
pmcid: 112646
doi: 10.1128/JVI.73.7.5852-5864.1999
Rahmeh, A. A. et al. Critical phosphoprotein elements that regulate polymerase architecture and function in vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 109, 14628–14633 (2012).
pubmed: 22908284
pmcid: 3437890
doi: 10.1073/pnas.1209147109
Groseth, A. et al. The Ebola virus ribonucleoprotein complex: a novel VP30-L interaction identified. Virus Res. 140, 8–14 (2009).
pubmed: 19041915
doi: 10.1016/j.virusres.2008.10.017
Xu, W. et al. Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nat. Commun. 8, 15576 (2017).
pubmed: 28593988
pmcid: 5472179
doi: 10.1038/ncomms15576
Emerson, S. U. & Schubert, M. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 84, 5655–5659 (1987).
pubmed: 2441389
pmcid: 298921
doi: 10.1073/pnas.84.16.5655
Guseva, S., Milles, S., Blackledge, M. & Ruigrok, R. W. H. The nucleoprotein and phosphoprotein of measles virus. Front. Microbiol. 10, 1832 (2019).
pubmed: 31496998
pmcid: 6713020
doi: 10.3389/fmicb.2019.01832
Nishio, M. et al. Mapping of domains on the human parainfluenza virus type 2 nucleocapsid protein (NP) required for NP-phosphoprotein or NP-NP interaction. J. Gen. Virol. 80, 2017–2022 (1999).
pubmed: 10466799
doi: 10.1099/0022-1317-80-8-2017
Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117 (2015). The first reported structure of ICV RNA polymerase apo complex, which highlights the dynamics of the flexible domains.
pubmed: 26503046
pmcid: 4783868
doi: 10.1038/nature15525
Peng, Q. et al. Structural insight into RNA synthesis by influenza D polymerase. Nat. Microbiol. 4, 1750–1759 (2019).
pubmed: 31209309
doi: 10.1038/s41564-019-0487-5
Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014). The first reported structure of the IAV RNA polymerase bound to viral RNA.
pubmed: 25409142
doi: 10.1038/nature14008
Reich, S. et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516, 361–366 (2014). The first reported structures of the IBV RNA polymerase revealing the movement of the CapB domain during cap-snatching.
pubmed: 25409151
doi: 10.1038/nature14009
Wandzik, J. M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181, 877–893 e21 (2020). This article reports the structures of the influenza virus RNA polymerase at key stages of the transcription process.
pubmed: 32304664
doi: 10.1016/j.cell.2020.03.061
Arragain, B. et al. Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nat. Commun. 11, 3590 (2020).
pubmed: 32681014
pmcid: 7368059
doi: 10.1038/s41467-020-17349-4
Gerlach, P., Malet, H., Cusack, S. & Reguera, J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 161, 1267–1279 (2015). The first reported structure of a sNSV L protein.
pubmed: 26004069
pmcid: 4459711
doi: 10.1016/j.cell.2015.05.006
Wang, P. et al. Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Nat. Microbiol. 5, 864–871 (2020).
pubmed: 32341479
doi: 10.1038/s41564-020-0712-2
Vogel, D. et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 48, 5749–5765 (2020).
pubmed: 32313945
pmcid: 7261188
doi: 10.1093/nar/gkaa253
Peng, R. et al. Structural insight into arenavirus replication machinery. Nature 579, 615–619 (2020). The first reported structures of arenavirus RNA polymerases.
pubmed: 32214249
doi: 10.1038/s41586-020-2114-2
Horwitz, J. A., Jenni, S., Harrison, S. C. & Whelan, S. P. J. Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proc. Natl Acad. Sci. USA 117, 2099–2107 (2020). The first reported structure of the rabies virus L–P complex.
pubmed: 31953264
pmcid: 6995008
doi: 10.1073/pnas.1918809117
Jenni, S. et al. Structure of the vesicular stomatitis virus L protein in complex with its phosphoprotein cofactor. Cell Rep. 30, 53–60 e55 (2020).
pubmed: 31914397
pmcid: 7049099
doi: 10.1016/j.celrep.2019.12.024
Pan, J. et al. Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature 577, 275–279 (2020). The first reported structure of the HMPV RNA polymerase bound to the the viral phosphoprotein.
pubmed: 31698413
doi: 10.1038/s41586-019-1759-1
Cao, D. et al. Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nat. Commun. 11, 368 (2020).
pubmed: 31953395
pmcid: 6969064
doi: 10.1038/s41467-019-14246-3
Gilman, M. S. A. et al. Structure of the respiratory syncytial virus polymerase complex. Cell 179, 193–204 e114 (2019). The first reported structure of the HRSV RNA polymerase bound to the viral phosphoprotein.
pubmed: 31495574
pmcid: 7111336
doi: 10.1016/j.cell.2019.08.014
Abdella, R., Aggarwal, M., Okura, T., Lamb, R. A. & He, Y. Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proc. Natl Acad. Sci. USA 117, 4931–4941 (2020). The first reported structure of the HPIV RNA polymerase with complete auxilliary domains and unique P-tetramer conformation.
pubmed: 32075920
pmcid: 7060699
doi: 10.1073/pnas.1919837117
te Velthuis, A. J. Common and unique features of viral RNA-dependent polymerases. Cell Mol. Life Sci. 71, 4403–4420 (2014).
doi: 10.1007/s00018-014-1695-z
Fan, H. et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573, 287–290 (2019). The first reported structures of human and avian IAV RNA polymerases, demonstrating the role of regulatory dimer formation in vRNA synthesis.
pubmed: 31485076
pmcid: 6795553
doi: 10.1038/s41586-019-1530-7
Subbarao, E. K., London, W. & Murphy, B. R. A single amino-acid in the PB2 gene of influenza-A virus is a determinant of host range. J. Virol. 67, 1761–1764 (1993).
pubmed: 8445709
pmcid: 240216
doi: 10.1128/jvi.67.4.1761-1764.1993
Gogrefe, N., Reindl, S., Gunther, S. & Rosenthal, M. Structure of a functional cap-binding domain in Rift Valley fever virus L protein. PLoS Pathog. 15, e1007829 (2019).
pubmed: 31136637
pmcid: 6555543
doi: 10.1371/journal.ppat.1007829
Reguera, J. et al. Comparative structural and functional analysis of bunyavirus and arenavirus cap-snatching endonucleases. PLoS Pathog. 12, e1005636 (2016).
pubmed: 27304209
pmcid: 4909276
doi: 10.1371/journal.ppat.1005636
Reguera, J., Weber, F. & Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6, e1001101 (2010).
pubmed: 20862319
pmcid: 2940753
doi: 10.1371/journal.ppat.1001101
Ogino, T. & Green, T. J. RNA synthesis and capping by non-segmented negative strand RNA viral polymerases: lessons from a prototypic virus. Front. Microbiol. 10, 1490 (2019).
pubmed: 31354644
pmcid: 6636387
doi: 10.3389/fmicb.2019.01490
Guryanov, S. G., Liljeroos, L., Kasaragod, P., Kajander, T. & Butcher, S. J. Crystal structure of the measles virus nucleoprotein core in complex with an N-terminal region of phosphoprotein. J. Virol. 90, 2849–2857 (2015).
pubmed: 26719278
doi: 10.1128/JVI.02865-15
Longhi, S. et al. The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J. Biol. Chem. 278, 18638–18648 (2003).
pubmed: 12621042
doi: 10.1074/jbc.M300518200
Ivanov, I., Crepin, T., Jamin, M. & Ruigrok, R. W. Structure of the dimerization domain of the rabies virus phosphoprotein. J. Virol. 84, 3707–3710 (2010).
pubmed: 20089657
pmcid: 2838143
doi: 10.1128/JVI.02557-09
Reguera, J., Gerlach, P. & Cusack, S. Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases. Curr. Opin. Struct. Biol. 36, 75–84 (2016).
pubmed: 26826467
doi: 10.1016/j.sbi.2016.01.002
Kouba, T., Drncova, P. & Cusack, S. Structural snapshots of actively transcribing influenza polymerase. Nat. Struct. Mol. Biol. 26, 460–470 (2019).
pubmed: 31160782
pmcid: 7610713
doi: 10.1038/s41594-019-0232-z
te Velthuis, A. J. W., Robb, N. C., Kapanidis, A. N. & Fodor, E. The role of the priming loop in influenza A virus RNA synthesis. Nat. Microbiol. 1, 16029 (2016).
doi: 10.1038/nmicrobiol.2016.29
Ogino, M., Gupta, N., Green, T. J. & Ogino, T. A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation. Nucleic Acids Res. 47, 299–309 (2019).
pubmed: 30395342
doi: 10.1093/nar/gky1058
Thierry, E. et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61, 125–137 (2016).
pubmed: 26711008
pmcid: 4712189
doi: 10.1016/j.molcel.2015.11.016
Pyle, J. D. & Whelan, S. P. J. RNA ligands activate the Machupo virus polymerase and guide promoter usage. Proc. Natl Acad. Sci. USA 116, 10518–10524 (2019).
pubmed: 31072925
pmcid: 6535001
doi: 10.1073/pnas.1900790116
Carrique, L. et al. Host ANP32 mediates the assembly of the influenza virus replicase. Nature 587, 638–643 (2020). The first reported structure of a putative replicating-encapsidating ICV polymerase dimer bound by host factor ANP32A.
pubmed: 33208942
pmcid: 7116770
doi: 10.1038/s41586-020-2927-z
Lukarska, M. et al. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541, 117–121 (2017). The first reported structures of the IAV and IBV RNA polymerases bound to a peptide mimicking the CTD of host Pol II.
pubmed: 28002402
doi: 10.1038/nature20594
Serna Martin, I. et al. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70, 1101–1110 e1104 (2018). The first reported structure of the ICV RNA polymerase bound to a peptide mimicking the CTD of host Pol II, which revealed the activation of viral transcription.
pubmed: 29910112
pmcid: 6024077
doi: 10.1016/j.molcel.2018.05.011
Te Velthuis, A. J. W. & Oymans, J. Initiation, elongation, and realignment during influenza virus mRNA synthesis. J. Virol. 92, e01775-17 (2018).
doi: 10.1128/JVI.01775-17
De Vlugt, C., Sikora, D., Rocheleau, L. & Pelchat, M. Priming and realignment by the influenza a virus RdRp is dependent on the length of the host primers and the extent of base pairing to viral RNA. Virology 536, 91–100 (2019).
pubmed: 31404845
doi: 10.1016/j.virol.2019.08.002
Yao, M. et al. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J. Gen. Virol. 93, 194–202 (2012).
pubmed: 21918010
doi: 10.1099/vir.0.033902-0
Bier, K., York, A. & Fodor, E. Cellular cap-binding proteins associate with influenza virus mRNAs. J. Gen. Virol. 92, 1627–1634 (2011).
pubmed: 21402597
doi: 10.1099/vir.0.029231-0
Walker, A. P., Sharps, J. & Fodor, E. Mutation of an influenza virus polymerase 3′ RNA promoter binding site inhibits transcription elongation. J. Virol. 94, e00498–00420 (2020).
pubmed: 32295915
pmcid: 7307170
doi: 10.1128/JVI.00498-20
Poon, L. L., Pritlove, D. C., Fodor, E. & Brownlee, G. G. Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J. Virol. 73, 3473–3476 (1999).
pubmed: 10074205
pmcid: 104115
doi: 10.1128/JVI.73.4.3473-3476.1999
Fodor, E., Pritlove, D. C. & Brownlee, G. G. The influenza virus panhandle is involved in the initiation of transcription. J. Virol. 68, 4092–4096 (1994).
pubmed: 8189550
pmcid: 236924
doi: 10.1128/jvi.68.6.4092-4096.1994
Tiley, L. S., Hagen, M., Matthews, J. T. & Krystal, M. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. J. Virol. 68, 5108–5116 (1994).
pubmed: 8035510
pmcid: 236454
doi: 10.1128/jvi.68.8.5108-5116.1994
Deng, T., Vreede, F. T. & Brownlee, G. G. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80, 2337–2348 (2006).
pubmed: 16474140
pmcid: 1395412
doi: 10.1128/JVI.80.5.2337-2348.2006
Oymans, J. & Te Velthuis, A. J. W. A mechanism for priming and realignment during influenza A virus replication. J. Virol. 92, e01773-17 (2018).
pubmed: 29118119
pmcid: 5774886
doi: 10.1128/JVI.01773-17
Jorba, N., Coloma, R. & Ortin, J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 5, e1000462 (2009).
pubmed: 19478885
pmcid: 2682650
doi: 10.1371/journal.ppat.1000462
Jorba, N., Area, E. & Ortin, J. Oligomerization of the influenza virus polymerase complex in vivo. J. Gen. Virol. 89, 520–524 (2008).
pubmed: 18198383
doi: 10.1099/vir.0.83387-0
Chang, S. et al. Cryo-EM structure of influenza virus RNA polymerase complex at 4.3Å resolution. Mol. Cell 57, 925–935 (2015).
pubmed: 25620561
doi: 10.1016/j.molcel.2014.12.031
Long, J. S. et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529, 101–104 (2016).
pubmed: 26738596
pmcid: 4710677
doi: 10.1038/nature16474
Long, J. S. et al. Species specific differences in use of ANP32 proteins by influenza A virus. eLife https://doi.org/10.7554/eLife.45066 (2019).
doi: 10.7554/eLife.45066
pubmed: 31808745
pmcid: 6948954
Reilly, P. T., Yu, Y., Hamiche, A. & Wang, L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays 36, 1062–1071 (2014).
pubmed: 25156960
pmcid: 4270211
doi: 10.1002/bies.201400058
Tchesnokov, E. P., Feng, J. Y., Porter, D. P. & Gotte, M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11, 326 (2019).
pmcid: 6520719
doi: 10.3390/v11040326
Delang, L., Abdelnabi, R. & Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir. Res. 153, 85–94 (2018).
pubmed: 29524445
doi: 10.1016/j.antiviral.2018.03.003
Graci, J. D. & Cameron, C. E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 16, 37–48 (2006).
pubmed: 16287208
doi: 10.1002/rmv.483
Furuta, Y. et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir. Res. 100, 446–454 (2013).
pubmed: 24084488
doi: 10.1016/j.antiviral.2013.09.015
Goldhill, D. H. et al. The mechanism of resistance to favipiravir in influenza. Proc. Natl Acad. Sci. USA 115, 11613–11618 (2018).
pubmed: 30352857
pmcid: 6233120
doi: 10.1073/pnas.1811345115
Yoon, J. J. et al. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob. Agents Chemother. 62, e00766-18 (2018).
pubmed: 29891600
pmcid: 6105843
doi: 10.1128/AAC.00766-18
Toots, M. et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl Med. 11, eaax5866 (2019).
pubmed: 31645453
pmcid: 6848974
doi: 10.1126/scitranslmed.aax5866
Lang, D. M., Zemla, A. T. & Zhou, C. L. Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Nucleic Acids Res. 41, 1464–1482 (2013).
pubmed: 23275546
doi: 10.1093/nar/gks1251
Li, C. et al. A peptide derived from the C-terminus of PB1 inhibits influenza virus replication by interfering with viral polymerase assembly. FEBS J. 280, 1139–1149 (2013).
pubmed: 23279951
doi: 10.1111/febs.12107
Ghanem, A. et al. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81, 7801–7804 (2007).
pubmed: 17494067
pmcid: 1933368
doi: 10.1128/JVI.00724-07
Yamada, K. et al. Identification of a novel compound with antiviral activity against influenza A virus depending on PA subunit of viral RNA polymerase. Microbes Infect. 14, 740–747 (2012).
pubmed: 22441116
doi: 10.1016/j.micinf.2012.02.012
Clark, M. P. et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 57, 6668–6678 (2014).
pubmed: 25019388
doi: 10.1021/jm5007275
Pflug, A. et al. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors. Nucleic Acids Res. 46, 956–971 (2018).
pubmed: 29202182
doi: 10.1093/nar/gkx1210
Wang, W. et al. The cap-snatching SFTSV endonuclease domain is an antiviral target. Cell Rep. 30, 153–163 e155 (2020).
pubmed: 31914382
pmcid: 7214099
doi: 10.1016/j.celrep.2019.12.020
McGowan, D. C. et al. Design, synthesis, and biological evaluation of novel indoles targeting the influenza PB2 cap binding region. J. Med. Chem. 62, 9680–9690 (2019).
pubmed: 31647875
pmcid: 7611167
doi: 10.1021/acs.jmedchem.9b01091
Omoto, S. et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 8, 9633 (2018).
pubmed: 29941893
pmcid: 6018108
doi: 10.1038/s41598-018-27890-4
Ye, Q., Krug, R. M. & Tao, Y. J. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444, 1078–1082 (2006).
pubmed: 17151603
doi: 10.1038/nature05379
Arragain, B. et al. High resolution cryo-EM structure of the helical RNA-bound Hantaan virus nucleocapsid reveals its assembly mechanisms. eLife 8, e43075 (2019).
pubmed: 30638449
pmcid: 6365055
doi: 10.7554/eLife.43075
Gutsche, I. et al. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348, 704–707 (2015).
pubmed: 25883315
doi: 10.1126/science.aaa5137
Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Nature 563, 137–140 (2018).
pubmed: 30333622
doi: 10.1038/s41586-018-0630-0
Su, Z. et al. Electron cryo-microscopy structure of Ebola virus nucleoprotein reveals a mechanism for nucleocapsid-like assembly. Cell 172, 966–978 e912 (2018).
pubmed: 29474922
pmcid: 5973842
doi: 10.1016/j.cell.2018.02.009
Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).
pubmed: 29144446
pmcid: 5714281
doi: 10.1038/nature24490
Arranz, R. et al. The structure of native influenza virion ribonucleoproteins. Science 338, 1634–1637 (2012).
pubmed: 23180776
doi: 10.1126/science.1228172
Moeller, A., Kirchdoerfer, R. N., Potter, C. S., Carragher, B. & Wilson, I. A. Organization of the influenza virus replication machinery. Science 338, 1631–1634 (2012).
pubmed: 23180774
pmcid: 3578580
doi: 10.1126/science.1227270
Dadonaite, B. et al. The structure of the influenza A virus genome. Nat. Microbiol. 4, 1781–1789 (2019).
pubmed: 31332385
pmcid: 7191640
doi: 10.1038/s41564-019-0513-7
Williams, G. D. et al. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat. Commun. 9, 465 (2018).
pubmed: 29386621
pmcid: 5792457
doi: 10.1038/s41467-018-02886-w
Lee, N. et al. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res. 45, 8968–8977 (2017).
pubmed: 28911100
pmcid: 5587783
doi: 10.1093/nar/gkx584