The prevalence of scoliosis within Belgian myelomeningocele population and the correlation with ambulatory status and neurological comorbidities: a chart audit.
Journal
Spinal cord
ISSN: 1476-5624
Titre abrégé: Spinal Cord
Pays: England
ID NLM: 9609749
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
11
11
2020
accepted:
23
12
2020
revised:
22
12
2020
pubmed:
27
1
2021
medline:
27
10
2021
entrez:
26
1
2021
Statut:
ppublish
Résumé
Retrospective chart audit. Firstly determining the prevalence of scoliosis in myelomeningocele (MMC) patients of the University Hospitals Leuven. Secondly analyzing whether there are differences concerning distribution of radiological level, ambulatory status, hydrocephalus, tethered cord, and syringomyelia in MMC patients with/without scoliosis. University Hospitals Leuven, spina bifida convention. The following data were collected: age, gender, radiograph type, age at the time of the radiograph, position during radiograph, presence of fusion, age at the time of fusion, diagnosis of hydrocephalus, tethered cord, or syringomyelia, radiological level of MMC, ambulatory status, main Cobb angle, main curve convexity, and main curve location. Correlation between prevalence of scoliosis and ambulatory status, neurological comorbidities, and radiological level were investigated. There were 116 patients remaining, after excluding patients without MMC or useful images. The scoliosis prevalence in MMC patients was 78.4% (95% CI, 71.0-85.8) for Cobb angle ≥10°; 60.3% (95% CI, 51.4-69.2) for ≥20°, 52.6% (95% CI, 43.5-61.7) for ≥30°, and 36.6% (95% CI, 27.7-45.5) for an angle ≥40°. Wheelchair users had 4 to 8 times more chance of having scoliosis than patients able to walk on all surfaces without aid. Thoracolumbar and lumbar radiological levels had a slightly higher prevalence of scoliosis than sacral levels. The high prevalence of scoliosis warrants a thorough screening and follow-up for MMC. There was no statistically significant difference between hydrocephalus, tethered cord, or syringomyelia regarding scoliosis. Future studies should focus on the interactions of the neurological comorbidities associated with MMC and scoliosis.
Identifiants
pubmed: 33495580
doi: 10.1038/s41393-020-00611-3
pii: 10.1038/s41393-020-00611-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1053-1060Informations de copyright
© 2021. The Author(s), under exclusive licence to International Spinal Cord Society.
Références
Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, et al. Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis. Am J Public Health. 2016;106:e24–34.
doi: 10.2105/AJPH.2015.302902
Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Prim. 2015;1:15007.
doi: 10.1038/nrdp.2015.7
Werhagen L, Gabrielsson H, Westgren N, Borg K. Medical complication in adults with spina bifida. Clin Neurol Neurosurg. 2013;115:1226–9.
doi: 10.1016/j.clineuro.2012.11.014
Kumar R, Singh SN. Spinal dysraphism: trends in northern India. Pediatr Neurosurg. 2003;38:133–45.
doi: 10.1159/000068819
Dicianno BE, Sherman A, Roehmer C, Zigler CK. Co-morbidities associated with early mortality in adults with spina bifida. Am J Phys Med Rehabil. 2018;97:861–5.
doi: 10.1097/PHM.0000000000000964
Allam AM, Schwabe AL. Neuromuscular scoliosis. PM R. 2013;5:957–63.
doi: 10.1016/j.pmrj.2013.05.015
Heyns A, Negrini S, Jansen K, Moens P, Schelfaut S, Peers K, et al. The prevalence of scoliosis in spina bifida subpopulations: a systematic review. Am J Phys Med Rehabil. 2018;97:848–54.
doi: 10.1097/PHM.0000000000000966
Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13:3.
doi: 10.1186/s13013-017-0145-8
Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Jt Surg Am. 1983;65:447–55.
doi: 10.2106/00004623-198365040-00004
Muller EB, Nordwall A, Oden A. Progression of scoliosis in children with myelomeningocele. Spine. 1994;19:147–50.
doi: 10.1097/00007632-199401001-00005
Graham HK, Harvey A, Rodda J, Nattrass GR, Pirpiris M. The functional mobility scale (FMS). J Pediatr Orthop. 2004;24:514–20.
doi: 10.1097/01241398-200409000-00011
Trivedi J, Thomson JD, Slakey JB, Banta JV, Jones PW. Clinical and radiographic predictors of scoliosis in patients with myelomeningocele. J Bone Jt Surg Am. 2002;84:1389–94.
doi: 10.2106/00004623-200208000-00015
Thomas JG, Hwang SW, Blumberg TJ, Whitehead WE, Curry DJ, Luerssen TG, et al. Correlation between shunt series and scoliosis radiographs in children with myelomeningoceles. J Neurosurg Spine. 2012;17:410–4.
doi: 10.3171/2012.8.SPINE12766
McLone DG, Herman JM, Gabrieli AP, Dias L. Tethered cord as a cause of scoliosis in children with a myelomeningocele. Pediatr Neurosurg. 1990;16:8–13.
doi: 10.1159/000120495
Dias MS. Neurosurgical causes of scoliosis in patients with myelomeningocele: an evidence-based literature review. J Neurosurg. 2005;103(Suppl 1):24–35.
pubmed: 16122001
Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A. Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop. 2001;21:252–6.
pubmed: 11242262