Drought by CO
CO2 enrichment
biomass
drought
dry-down
leaf gas exchange
physiology
plant hydraulic
water-savings
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
29
10
2020
accepted:
21
01
2021
pubmed:
27
1
2021
medline:
15
5
2021
entrez:
26
1
2021
Statut:
ppublish
Résumé
Elevated atmospheric CO
Substances chimiques
Water
059QF0KO0R
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1421-1434Informations de copyright
© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Références
Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351-372.
Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258-270.
Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L. 2011a. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168: 1550-1561.
Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van Der Linden L, Beier C. 2011b. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant, Cell & Environment 34: 1207-1222.
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684.
Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB. 2013. Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Global Change Biology 19: 1188-1196.
Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J. 2020. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change 10: 1091-1095.
Andresen LC, Muller C, de Dato G, Dukes JS, Emmett BA, Estiarte M, Jentsch A, Kroel-Dulay G, Luscher A, Niu S et al. 2016. Shifting impacts of climate change: long-term patterns of plant response to elevated CO2, drought, and warming across ecosystems. Advances in Ecological Research 55: 437-473.
Atwell BJ, Henery ML, Rogers GS, Seneweera SP, Treadwell M, Conroy JP. 2007. Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2-enriched atmospheres. Functional Plant Biology 34: 1137-1149.
Avila RT, de Almeida WL, Costa LC, Machado KLG, Barbosa ML, de Souza RPB, Martino PB, Juarez MAT, Marcal DMS, Martins SCV et al. 2020a. Elevated air CO2 improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants. Environmental and Experimental Botany 177: 104137.
Avila RT, Cardoso AA, de Almeida WL, Costa LC, Machado KLG, Barbosa ML, de Souza RPB, Oliveira LA, Batista DS, Martins SCV et al. 2020b. Coffee plants respond to drought and elevated CO2 through changes in stomatal function, plant hydraulic conductance, and aquaporin expression. Environmental and Experimental Botany 177: 104148.
Ayub G, Smith RA, Tissue DT, Atkin OK. 2011. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist 190: 1003-1018.
Baker JT, Allen LH, Boote KJ, Pickering NB. 1997. Rice responses to drought under carbon dioxide enrichment. 2. Photosynthesis and evapotranspiration. Global Change Biology 3: 129-138.
Bartlett MK, Zhang Y, Kreidler N, Sun S, Ardy R, Cao K, Sack L. 2014. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters 17: 1580-1590.
Becklin KM, Wallker SM II, Way DA, Ward JK. 2017. CO2 studies remain key to understanding a future world. New Phytologist 214: 34-40.
Brodribb TJ, Powers J, Cochard H, Choat B. 2020. Hanging by a thread? Forests and drought. Science 368: 261-266.
Catovsky S, Bazzaz FA. 1999. Elevated CO2 influences the responses of two birch species to soil moisture: implications for forest community structure. Global Change Biology 5: 507-518.
Centritto M, Lee HSJ, Jarvis PJ. 1999a. Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings - I. Growth, whole-plant water use efficiency and water loss. New Phytologist 141: 129-140.
Centritto M, Lucas ME, Jarvis PG. 2002. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiology 22: 699-706.
Centritto M, Magnani J, Lee HSJ, Jarvis PJ. 1999b. Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings - II. Photosynthetic capacity and water relations. New Phytologist 141: 141-153.
Chaves MM, Maroco JP, Pereira FS. 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology 30: 239-264.
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, Lopez R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558: 531-539.
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke U et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752-755.
Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, Kruijt B, Rowland L, Fisher RA, Bunks OJ et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS vol 1-Hydro). Geoscientific Model Development 9: 4227-4255.
Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52-58.
De Kauwe MG, Medlyn BE, Ukkola AM, Mu M, Sabot MEB, Pitman AJ, Meir P, Cernusak LA, Rifai SW, Choat B et al. 2020. Identifying areas at risk of drought-induced mortality across south-eastern Australia. Global Change Biology 26: 5716-5733.
Domec J-C, Schafer K, Oren R, Kim HS, McCarthy HR. 2010. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiology 30: 1001-1015.
Duan H, Amthor JS, Duursma RA, O’Grady AP, Choat B, Tissue DT. 2013. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiology 33: 779-792.
Duan H, Duursma RA, Huang G, Smith RA, Choat B, O’Grady AP, Tissue DT. 2014. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant, Cell & Environment 37: 1598-1613.
Duan H, Huang G, Zhou S, Tissue DT. 2018. Dry mass production, allocation patterns and water use efficiency of two conifers with different water use strategies under elevated [CO2], warming and drought conditions. European Journal of Forest Research 137: 605-618.
Duan H, O’Grady AP, Duursma RA, Choat B, Huang G, Smith RA, Jiang Y, Tissue DT. 2015. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiology 35: 756-770.
Duursma RA, Barton CVM, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE. 2011. Rooting depth explains [CO2] × drought interaction in Eucalyptus saligna. Tree Physiology 31: 922-931.
Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, Wagner Y, Klein T, Teodoro GS et al. 2020. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist 226: 1622-1637.
Engel EC, Weltzin JF, Norby RJ, Classen AT. 2009. Responses of an old-field plant community to interacting factors of elevated [CO2], warming, and soil moisture. Journal of Plant Ecology 2: 1-11.
Fleta-Soriano E, Munne-Bosch S. 2016. Stress memory and the interactive effects of drought: a physiological perspective. Frontiers in Plant Science 7: 143.
Gimeno TE, McVicar TR, O’Grady AP, Tissue DT, Ellsworth DS. 2018. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Global Change Biology 24: 3010-3024.
Guehl JM, Picon C, Aussenac G, Gross P. 1994. Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiology 14: 707-724.
Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment 25: 379-393.
Gupta A, Rico-Medina A, Cano-Delgado AI. 2020. The physiology of plant responses to drought. Science 368: 266-269.
Heath J, Kerstiens G. 1997. Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech. Plant, Cell & Environment 20: 57-67.
Hodgkinson KC. 1979. The shrubs of Poplar Box (Eucalyptus populnea) lands and their biology. The Rangeland Journal 1: 280-293.
Hungate BA, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen JD, Hinkle CR, Drake BG. 2002. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biology. 8: 289-298.
Jiang M, Caldararu S, Zhang H, Fleischer K, Crous KY, Yang J, De Kauwe MG, Ellsworth DS, Reich PB, Tissue DT et al. 2020. Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis. Global Change Biology 26: 5856-5873.
Johnson JD, Tognetti R, Paris P. 2002. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2. Physiologia Plantarum 115: 93-100.
Kannenberg SA, Schwalm CR, Anderegg WRL. 2020. Ghost of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters 23: 891-901.
Keel SG, Pepin S, Leuzinger S, Korner C. 2007. Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees 21: 151-159.
Kelly JWG, Duursma RA, Atwell BJ, Tissue DT, Medlyn BE. 2016. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci) mechanism. New Phytologist 209: 1600-1612.
Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, Carlos A, da Costa L, Gentine P. 2019. Implementing plant hydraulics in the Community Land Model, Version 5. Journal of Advances in Modeling Earth Systems 11: 485-513.
Koven CD, Knox RG, Fisher RA, Chambers JQ, Christoffersen BO, Davies SJ, Detto M, Dietze MC, Faybishenko B, Holm J et al. 2020. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Coorado Island, Panama. Biogeosciences 17: 3017-3044.
Leuzinger S, Körner C. 2007. Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology 13: 2498-2508.
Li JH, Johnson DP, Dijkstra P, Hungate BA, Hinkle CR, Drake BG. 2007. Elevated CO2 mitigates the adverse effects of drought on daytime net ecosystem CO2 exchange and photosynthesis in a Florida scrub-oak ecosystem. Photosynthetica 45: 51-58.
Lloyd J, Farquhar GD. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I: General principles and forest ecosystems. Functional Ecology 10: 4-32.
McCarthy HR, Oren R, Finzi AX, Johnsen KH. 2006. Canopy leaf area constrains CO2-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, USA 103: 19356-19361.
McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology 35: 521-534.
Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomaki S, Laitat E et al. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149: 247-264.
Medlyn BE, De Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M, Pak B, Smith B, Wang Y-P et al. 2016. Using models to guide field experiments; a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biology 22: 2834-2851.
Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W et al. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change 5: 528-534.
Merchant A, Callister A, Arndt S, Tausz M, Adams M. 2007. Contrasting physiological responses of six Eucalytpus species to water deficit. Annals of Botany 100: 1507-1515.
van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M et al. 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology 151: 765-773.
Morse SR, Wayne P, Miao SL, Bazzaz FA. 1993. Elevated CO2 and drought alter tissue water relations of birch (Betula populifolia Marsh) seedlings. Oecologia 95: 599-602.
Noble IR. 1989. Ecological traits of the Eucalyptus L’Herit Subgenera Monocalyptus and Symphyomyrtus. Australian Journal of Botany 37: 207-224.
Nowak RS, Zitzer SE, Babcock D, Smith-Longoza V, Charlet TN, Coleman JS, Seemann JR, Smith SD. 2004. Elevated atmospheric CO2 does not conserve soil water in the Mojave Desert. Ecology 85: 93-99.
Papastefanou P, Zang CS, Pugh TAM, Liu D, Grams TEE, Hickler T, Rammig A. 2020. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Frontiers in Plant Science 11: 373.
Perry LG, Shafroth PB, Blumenthal DM, Morgan JA, LeCain DR. 2013. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytologist 197: 532-543.
Pinheiro J, Bates D, DebRoy S, Sarkar D, Core R. 2020. nlme: linear and nonlinear mixed effects models. R package version3.1-150. [WWW document] URL https://CRAN.R-project.org/package=nlme
Polley HW, Tischler CR, Johnson HB, Pennington RE. 1999. Growth, water relations, and survival of drought-exposed seedlings from six maternal families of honey mesquite (Prosopis glandulosa): responses to CO2 enrichment. Tree Physiology 19: 359-366.
Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HMA, Rowland L, Almeida S, Brando PM, da Costa ACL, Costa MH et al. 2013. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist 200: 350-364.
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC et al. 2013. Climate extremes and the carbon cycle. Nature 500: 287-295.
Robredo A, Perez-Lopez U, de la Maza HS, Gonzalez-Moro B, Lacuesta M, Mena-Petite A, Munoz-Rueda A. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany 59: 252-263.
Roden JS, Ball MC. 1996. The effect of elevated [CO2] on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits. Plant Physiology 111: 909-919.
Sabot MEB, De Kauwe MG, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, Abramowitz G. 2020. Plant profit maximization improves predictions of European forest responses to drought. New Phytologist 226: 1638-1655.
Sefton CA, Montagu K, Atwell BJ, Conroy JP. 2002. Anatomical variation in juvenile eucalypt leaves accounts for differences in specific leaf area and CO2 assimilation rates. Australian Journal of Botany 50: 301-310.
Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, Flach M, Frank D. 2018. Drought, heat and the carbon cycle: a review. Current Climate Change Reports 4: 266-286.
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C et al. 2019. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution 3: 1309-1320.
Swann ALS, Hoffman FM, Koven CD, Randerson JT. 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences, USA 113: 10019-10024.
Tognetti R, Longobucco A, Miglietta F, Raschi A. 1999. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiology 19: 261-270.
Tombesi S, Frioni T, Poni S, Palliotti A. 2018. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environmental and Experimental Botany 150: 106-114.
Tschaplinski TJ, Stewart DB, Hanson PJ, Norby RJ. 1995. Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist 129: 63-71.
Ukkola AM, De Kauwe MG, Roderick ML, Abramowitz G, Pitman AJ. 2020. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical Research Letters 46: e2020GL087820.
Ukkola AM, Pitman AJ, De Kauwe MG, Abramowitz G, Herger N, Evans JP, Decker M. 2018. Evaluating CMIP5 model agreement for multiple drought metrics. Journal of Climate 19: 969-988.
Vaz M, Cochard H, Gazarini L, Graca J, Chaves MM, Pereira JS. 2012. Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees 26: 1145-1157.
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ et al. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist 229: 2413-2445.
Warren JM, Norby RJ, Wullschleger SD. 2011. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology 31: 117-130.
Wullschleger SD, Norby RJ. 2001. Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytologist 150: 489-498.
Wullschleger SD, Tschaplinski TJ, Norby RJ. 2002. Plant water relations at elevated CO2 - implications for water-limited environments. Plant, Cell & Environment 25: 319-331.
Xu X, Medvigy D, Powers JS, Becknell JM, Guan K. 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytologist 212: 80-95.
Xu Z, Shimizu H, Yagasaki Y, Ito S, Zheng Y, Zhou G. 2013. Interactive effects of elevated CO2, drought, and warming on plants. Journal of Plant Growth Regulation 32: 692-707.
Yu K, Smith WK, Trugman AT, Condit R, Hubbell SP, Sardans J, Peng C, Zhu K, Penuelas J, Cailleret M et al. 2019. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences, USA 116: 24662-24667.
Zeppel MJ, Lewis JD, Chaszar B, Smith RA, Medlyn BE, Huxman TE, Tissue DT. 2012. Nocturnal stomatal conductance responses to rising CO2, temperature and drought. New Phytologist 193: 929-938.
Zhou S, Duursma RA, Medlyn BE, Kelly JW, Prentice IC. 2013. How should we model plant response to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology 182: 204-214.
Zhou S, Prentice IC, Medlyn BE. 2019. Bridging drought experiment and modelling: representing the differential sensitivities of leaf gas exchange to drought. Frontiers in Plant Science 9: 1965.