Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes.

EEG artefacts TMS-EEG active electrodes electroencephalography independent component analysis motor evoked potentials neurophysiology transcranial evoked potentials transcranial magnetic stimulation

Journal

Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646

Informations de publication

Date de publication:
22 Jan 2021
Historique:
received: 21 12 2020
revised: 14 01 2021
accepted: 19 01 2021
entrez: 27 1 2021
pubmed: 28 1 2021
medline: 28 1 2021
Statut: epublish

Résumé

Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection-Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.

Identifiants

pubmed: 33499330
pii: brainsci11020145
doi: 10.3390/brainsci11020145
pmc: PMC7912161
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

J Neurosci. 2016 Jan 13;36(2):325-35
pubmed: 26758826
Mov Disord. 2018 Dec;33(12):1902-1909
pubmed: 30376603
Sci Rep. 2020 Feb 21;10(1):3168
pubmed: 32081901
Brain Stimul. 2018 Sep - Oct;11(5):1063-1070
pubmed: 29709505
Front Neural Circuits. 2016 Nov 29;10:97
pubmed: 27965543
Curr Opin Neurobiol. 2013 Apr;23(2):172-8
pubmed: 23265964
Neurosci Biobehav Rev. 2016 May;64:175-84
pubmed: 26959337
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Front Neural Circuits. 2016 Sep 22;10:73
pubmed: 27713691
Hum Brain Mapp. 2002 Jan;15(1):1-25
pubmed: 11747097
Brain Topogr. 2015 May;28(3):520-8
pubmed: 23996091
Neuroimage. 2018 Feb 1;166:135-151
pubmed: 29061529
Clin Neurophysiol. 2017 Sep;128(9):1563-1574
pubmed: 28709122
Brain Stimul. 2020 May - Jun;13(3):536-538
pubmed: 32289672
Front Neurosci. 2018 Jun 12;12:400
pubmed: 29946234
Med Biol Eng Comput. 1997 Mar;35(2):135-40
pubmed: 9136207
Brain Stimul. 2018 May - Jun;11(3):536-544
pubmed: 29342443
Brain Topogr. 2013 Apr;26(2):326-37
pubmed: 23053600
Neuroimage. 2014 Nov 1;101:425-39
pubmed: 25067813
Clin Neurophysiol. 2015 Jun;126(6):1071-1107
pubmed: 25797650
Psychophysiology. 2010 Sep;47(5):888-904
pubmed: 20374541
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:230-3
pubmed: 26736242
Parkinsonism Relat Disord. 2015 Jul;21(7):789-92
pubmed: 25922270
Brain Stimul. 2019 Nov - Dec;12(6):1537-1552
pubmed: 31377097
Brain Stimul. 2021 Jan-Feb;14(1):4-18
pubmed: 33127580
J Neurosci Methods. 2014 Sep 30;235:298-307
pubmed: 25075801
Neuropsychologia. 1971 Mar;9(1):97-113
pubmed: 5146491
Neuroimage. 2017 Feb 15;147:934-951
pubmed: 27771347
Clin Neurophysiol. 2004 Mar;115(3):583-8
pubmed: 15036054
Science. 2005 Sep 30;309(5744):2228-32
pubmed: 16195466
Neuroimage. 2016 Oct 1;139:157-166
pubmed: 27291496
Stat Med. 2007 Jul 20;26(16):3095-113
pubmed: 17216594
Brain Stimul. 2013 Nov;6(6):868-76
pubmed: 23651674
Clin Neurophysiol. 2020 Jan;131(1):70-77
pubmed: 31756594
Clin Neurophysiol. 2019 May;130(5):802-844
pubmed: 30772238
J Neurophysiol. 2001 Oct;86(4):1983-90
pubmed: 11600655
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499

Auteurs

Marco Mancuso (M)

Department of Human Neurosciences, University of Rome "Sapienza", 00185 Rome, Italy.

Valerio Sveva (V)

Department of Human Neurosciences, University of Rome "Sapienza", 00185 Rome, Italy.

Alessandro Cruciani (A)

Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

Katlyn Brown (K)

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Jaime Ibáñez (J)

Department of Bioengineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK.

Vishal Rawji (V)

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Elias Casula (E)

Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, 00142 Rome, Italy.

Isabella Premoli (I)

Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK.

Sasha D'Ambrosio (S)

Chalfont Centre for Epilepsy, Chalfont St. Peter SL9 0RJ, UK.
Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

John Rothwell (J)

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Lorenzo Rocchi (L)

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Classifications MeSH