Oxysterols and retinal degeneration.
cholesterol
oxysterol
retinal degeneration
therapy
toxicity
Journal
British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
revised:
13
01
2021
received:
30
04
2020
accepted:
19
01
2021
pubmed:
28
1
2021
medline:
22
9
2021
entrez:
27
1
2021
Statut:
ppublish
Résumé
Retinal degeneration, characterised by the progressive death of retinal neurons, is the most common cause of visual impairment. Oxysterols are the cholesterol derivatives produced via enzymatic and/or free radical oxidation that regulate cholesterol homeostasis in the retina. Preclinical and clinical studies have suggested a connection between oxysterols and retinal degeneration. Here, we summarise early and recent work related to retina oxysterol-producing enzymes and the distribution of oxysterols in the retina. We examine the impact of loss of oxysterol-producing enzymes on retinal pathology and explore the molecular mechanisms associated with the toxic or protective roles of individual oxysterols in different types of retinal degeneration. We conclude that increased efforts to better understand the oxysterol-associated pathophysiology will help in the development of effective retinal degeneration therapies. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Substances chimiques
Oxysterols
0
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3205-3219Informations de copyright
© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Références
Adams, C. M., Reitz, J., DeBrabander, J. K., Feramisco, J. D., Brown, M. S., & Goldstein, J. L. (2004). Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. Journal of Biological Chemistry, 279, 52772-52780. https://doi.org/10.1074/jbc.M410302200
Alexander, S. P., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Sharman, J. L. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246. https://doi.org/10.1111/bph.14750
Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Sharman, J. L. (2019). The concise guide to pharmacology 2019/20: Enzymes. British Journal of Pharmacology, 176, S297-S396.
Alexander, S. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Southan, C. (2019). The concise guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 176, S397-S493. https://doi.org/10.1111/bph.14753
Almasieh, M., Wilson, A. M., Morquette, B., Vargas, J. L. C., & di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in Retinal and Eye Research, 31(2), 152-181. https://doi.org/10.1016/j.preteyeres.2011.11.002
Anderson, A., Campo, A., Fulton, E., Corwin, A., Jerome, W. G. III, & O'Connor, M. S. (2020). 7-Ketocholesterol in disease and aging. Redox Biology, 29, 101380. https://doi.org/10.1016/j.redox.2019.101380
Biswas, L., Farhan, F., Reilly, J., Bartholomew, C., & Shu, X. (2018). TSPO ligands promote cholesterol efflux and suppress oxidative stress and inflammation in choroidal endothelial cells. International Journal of Molecular Sciences, 19(12), 3740. https://doi.org/10.3390/ijms19123740
Biswas, L., Zhou, X., Dhillon, B., Graham, A., & Shu, X. (2017). Retinal pigment epithelium cholesterol efflux mediated by the18 kDa translocator protein, TSPO, a potential target for treating age-related macular degeneration. Human Molecular Genetics, 26, 4327-4339. https://doi.org/10.1093/hmg/ddx319
Björkhem, I. (2006). Crossing the barrier: Oxysterols as cholesterol transporters and metabolic modulators in the brain. Journal of Internal Medicine, 260(6), 493-508. https://doi.org/10.1111/j.1365-2796.2006.01725.x
Bodin, K., Andersson, U., Rystedt, E., Ellis, E., Norlin, M., Pikuleva, I., Eggertsen, G., Björkhem, I., & Diczfalusy, U. (2002). Metabolism of 4β-hydroxycholesterol in humans. Journal of Biological Chemistry, 277(35), 31534-31540. https://doi.org/10.1074/jbc.M201712200
Bretillon, L., Diczfalusy, U., Björkhem, I., Maire, M. A., Martine, L., Joffre, C., Acar, N., Bron, A., & Creuzot-Garcher, C. (2007). Cholesterol-24S-hydroxylase (CYP46A1) is specifically expressed in neurons of the neural retina. Current Eye Research, 32(4), 361-366. https://doi.org/10.1080/02713680701231857
Brown, A. J., Dean, R. T., & Jessup, W. (1996). Free and esterified oxysterol: Formation during copper-oxidation of low density lipoprotein and uptake by macrophages. Journal of Lipid Research, 37(2), 320-335. https://doi.org/10.1016/S0022-2275(20)37619-7
Cruysberg, J. R. M., Wevers, R. A., van Engelen, B. G. M., Pinckers, A. J. L. G., van Spreeken, A. C. G. A., & Tolboom, J. J. M. (1995). Ocular and systemic manifestations of cerebrotendinous xanthomatosis. American Journal of Ophthalmology, 120(5), 597-604. https://doi.org/10.1016/S0002-9394(14)72206-8
Curcio, C. A., Millican, C. L., Bailey, T., & Kruth, H. S. (2001). Accumulation of cholesterol with age in human Bruch's membrane. Investigative Ophthalmology & Visual Science, 42(1), 265-274.
Curcio, C. A., Presley, J. B., Malek, G., Medeiros, N. E., Avery, D. V., & Kruth, H. S. (2005). Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Experimental Eye Research, 81(6), 731-741. https://doi.org/10.1016/j.exer.2005.04.012
Datta, S., Cano, M., Ebrahimi, K., Wang, L., & Handa, J. T. (2017). The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in Retinal and Eye Research, 60, 201-218. https://doi.org/10.1016/j.preteyeres.2017.03.002
DeBose-Boyd, R. A., Brown, M. S., Li, W.-P., Nohturfft, A., Goldstein, J. L., & Espenshade, P. J. (1999). Transport dependent proteolysis of SREBP: Relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell, 99, 703-712. https://doi.org/10.1016/S0092-8674(00)81668-2
Ding, J. D., Johnson, L. V., Herrmann, R., Farsiu, S., Smith, S. G., Groelle, M., Mace, B. E., Sullivan, P., Jamison, J. A., Kelly, U., & Harrabi, O. (2011). Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proceedings of the National Academy of Sciences, 108(28), E279-E287.
Dotti, M. T., Rufa, A., & Federico, A. (2001). Cerebrotendinous xanthomatosis: Heterogeneity of clinical phenotype with evidence of previously undescribed ophthalmological findings. Journal of Inherited Metabolic Disease, 24(7), 696-706. https://doi.org/10.1023/A:1012981019336
Dugas, B., Charbonnier, S., Baarine, M., Ragot, K., Delmas, D., Ménétrier, F., Lherminier, J., Malvitte, L., Khalfaoui, T., Bron, A., Creuzot-Garcher, C., Latruffe, N., & Creuzot-Garcher, C. (2010). Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: Cytoprotective effects and prevention of VEGF secretion by resveratrol. European Journal of Nutrition, 49(7), 435-446. https://doi.org/10.1007/s00394-010-0102-2
Elias, E. R., Hansen, R. M., Irons, M., Quinn, N. B., & Fulton, A. B. (2003). Rod photoreceptor responses in children with Smith-Lemli-Opitz syndrome. Archives of Ophthalmology, 121(12), 1738-1743. https://doi.org/10.1001/archopht.121.12.1738
Fitzky, B. U., Moebius, F. F., Asaoka, H., Waage-Baudet, H., Xu, L., Xu, G., Maeda, N., Kluckman, K., Hiller, S., Yu, H., Batta, A. K., Shefer, S., Chen, T., Salen, G., Sulik, K., Simoni, R. D., Ness, G. C., Glossmann, H., Patel, S. B., … Batta, A. K. (2001). 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. The Journal of Clinical Investigation, 108(6), 905-915. https://doi.org/10.1172/JCI200112103
Fliesler, S. J., & Bretillon, L. (2010). The ins and outs of cholesterol in the vertebrate retina. Journal of Lipid Research, 51(12), 3399-3413. https://doi.org/10.1194/jlr.R010538
Fliesler, S. J., Peachey, N. S., Herron, J., Hines, K. M., Weinstock, N. I., Rao, S. R., & Xu, L. (2018). Prevention of retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome. Scientific Reports, 8(1), 1-13.
Fliesler, S. J., Peachey, N. S., Richards, M. J., Nagel, B. A., & Vaughan, D. K. (2004). Retinal degeneration in a rodent model of Smith-Lemli-Opitz syndrome: Electrophysiologic, biochemical, and morphologic features. Archives of Ophthalmology, 122(8), 1190-1200. https://doi.org/10.1001/archopht.122.8.1190
Fliesler, S. J., Richards, M. J., Miller, C. Y., & Peachey, N. S. (1999). Marked alteration of sterol metabolism and composition without compromising retinal development or function. Investigative Ophthalmology & Visual Science, 40(8), 1792-1801.
Fliesler, S. J., & Xu, L. (2018). Oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome: Implications for an improved therapeutic intervention. Molecules, 23(10), 2720. https://doi.org/10.3390/molecules23102720
Fourgeux, C., Martine, L., Acar, N., Bron, A. M., Creuzot-Garcher, C. P., & Bretillon, L. (2014). In vivo consequences of cholesterol-24S-hydroxylase (CYP46A1) inhibition by voriconazole on cholesterol homeostasis and function in the rat retina. Biochemical and Biophysical Research Communications, 446(3), 775-781. https://doi.org/10.1016/j.bbrc.2014.01.118
Fourgeux, C., Martine, L., Björkhem, I., Diczfalusy, U., Joffre, C., Acar, N., Creuzot-Garcher, C., Bron, A., & Bretillon, L. (2009). Primary open-angle glaucoma: Association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Investigative Ophthalmology & Visual Science, 50(12), 5712-5717. https://doi.org/10.1167/iovs.09-3655
Fourgeux, C., Martine, L., Pasquis, B., Maire, M. A., Acar, N., Creuzot-Garcher, C., Bron, A., & Bretillon, L. (2012). Steady-state levels of retinal 24S-hydroxycholesterol are maintained by glial cells intervention after elevation of intraocular pressure in the rat. Acta Ophthalmologica, 90(7), e560-e567. https://doi.org/10.1111/j.1755-3768.2012.02490.x
Fu, X., Menke, J. G., Chen, Y., Zhou, G., MacNaul, K. L., Wright, S. D., Sparrow, C. P., & Lund, E. G. (2001). 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. Journal of Biological Chemistry, 276(42), 38378-38387. https://doi.org/10.1074/jbc.M105805200
Fukumoto, H., Deng, A., Irizarry, M. C., Fitzgerald, M. L., & Rebeck, G. W. (2002). Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver x receptor agonists increases secreted Aβ levels. The Journal of Biological Chemistry, 277, 48508-48513. https://doi.org/10.1074/jbc.M209085200
Garry, D., Hansen, R. M., Moskowitz, A., Elias, E. R., Irons, M., & Fulton, A. B. (2010). Cone ERG responses in patients with Smith-Lemli-Opitz syndrome (SLOS). Documenta Ophthalmologica, 121(2), 85-91. https://doi.org/10.1007/s10633-010-9232-3
Griffiths, W. J., & Wang, Y. (2019). Oxysterol research: A brief review. Biochemical Society Transactions, 47(2), 517-526. https://doi.org/10.1042/BST20180135
Guarneri, P., Guarneri, R., Cascio, C., Pavasant, P., Piccoli, F., & Papadopoulos, V. (1994). Neurosteroidogenesis in rat retinas. Journal of Neurochemistry, 63, 86-96. https://doi.org/10.1046/j.1471-4159.1994.63010086.x
Guillemot-Legris, O., Mutemberezi, V., & Muccioli, G. G. (2016). Oxysterols in metabolic syndrome: From bystander molecules to bioactive lipids. Trends in Molecular Medicine, 22(7), 594-614. https://doi.org/10.1016/j.molmed.2016.05.006
Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L., Bengtsson, B., & Hussein, M. (2002). Reduction of intraocular pressure and glaucoma progression: Results from the early manifest glaucoma trial. Archives of Ophthalmology, 120(10), 1268-1279. https://doi.org/10.1001/archopht.120.10.1268
Heo, G. Y., Bederman, I., Mast, N., Liao, W. L., Turko, I. V., & Pikuleva, I. A. (2011). Conversion of 7-ketocholesterol to oxysterol metabolites by recombinant CYP27A1 and retinal pigment epithelial cells. Journal of Lipid Research, 52(6), 1117-1127. https://doi.org/10.1194/jlr.M014217
Honda, A., Salen, G., Matsuzaki, Y., Batta, A. K., Xu, G., Leitersdorf, E., Tint, G. S., Erickson, S. K., Tanaka, N., & Shefer, S. (2001). Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27−/− mice and CTX. Journal of Lipid Research, 42(2), 291-300. https://doi.org/10.1016/S0022-2275(20)31691-6
Hu, D. N., Simon, J. D., & Sarna, T. (2008). Role of ocular melanin in ophthalmic physiology and pathology. Photochemistry and Photobiology, 84(3), 639-644. https://doi.org/10.1111/j.1751-1097.2008.00316.x
Hua, X., Yokoyama, C., Wu, J., Briggs, M. R., Brown, M. S., Goldstein, J. L., & Wang, X. (1993). SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proceedings of the National Academy of Sciences of the United States of America, 90, 11603-11607. https://doi.org/10.1073/pnas.90.24.11603
Huang, J. D., Amaral, J., Lee, J. W., Larrayoz, I. M., & Rodriguez, I. R. (2012). Sterculic acid antagonizes 7-ketocholesterol-mediated inflammation and inhibits choroidal neovascularization. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(4), 637-646. https://doi.org/10.1016/j.bbalip.2012.01.013
Hudry, E., van Dam, D., Kulik, W., De Deyn, P. P., Stet, F. S., Ahouansou, O., Benraiss, A., Delacourte, A., Bougnères, P., Aubourg, P., & Cartier, N. (2010). Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer's disease. Molecular Therapy, 18(1), 44-53. https://doi.org/10.1038/mt.2009.175
Indaram, M., Ma, W., Zhao, L., Fariss, R. N., Rodriguez, I. R., & Wong, W. T. (2015). 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: A potential pathogenic mechanism underlying age-related macular degeneration. Scientific Reports, 5, 9144. https://doi.org/10.1038/srep09144
Isas, J. M., Luibl, V., Johnson, L. V., Kayed, R., Wetzel, R., Glabe, C. G., Langen, R., & Jeannie Chen, J. (2010). Soluble and mature amyloid fibrils in drusen deposits. Investigative Ophthalmology & Visual Science, 51, 1304-1310. https://doi.org/10.1167/iovs.09-4207
Ishikawa, M., Yoshitomi, T., Zorumski, C. F., & Izumi, Y. (2016). 24(S)-hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure. Scientific Reports, 6, 33886. https://doi.org/10.1038/srep33886
Jaliffa, C. O., Howard, S., Hoijman, E., Salido, E., Sarmiento, M. I. K., Arias, P., & Rosenstein, R. E. (2005). Effect of neurosteroids on the retinal gabaergic system and electroretinographic activity in the golden hamster. Journal of Neurochemistry, 94(6), 1666-1675. https://doi.org/10.1111/j.1471-4159.2005.03321.x
Janowski, B. A., Grogan, M. J., Jones, S. A., Wisely, G. B., Kliewer, S. A., Corey, E. J., & Mangelsdorf, D. J. (1999). Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proceedings of the National Academy of Sciences, 96(1), 266-271. https://doi.org/10.1073/pnas.96.1.266
Joffre, C., Leclère, L., Buteau, B., Martine, L., Cabaret, S., Malvitte, L., Acar, N., Lizard, G., Bron, A., Creuzot-Garcher, C., & Bretillon, L. (2007). Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Current Eye Research, 32(3), 271-280. https://doi.org/10.1080/02713680601187951
Kacher, R., Lamazière, A., Heck, N., Kappes, V., Mounier, C., Despres, G., Dembitskaya, Y., Perrin, E., Christaller, W., Sasidharan Nair, S., & Messent, V. (2019). CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain, 142(8), 2432-2450.
Karlstetter, M., Scholz, R., Rutar, M., Wong, W. T., Provis, J. M., & Langmann, T. (2015). Retinal microglia: Just bystander or target for therapy? Progress in Retinal and Eye Research, 45, 30-57. https://doi.org/10.1016/j.preteyeres.2014.11.004
Kass, M. A., Heuer, D. K., Higginbotham, E. J., Johnson, C. A., Keltner, J. L., Miller, J. P., Parrish, R. K. 2nd, Wilson, M. R., & Gordon, M. O. (2002). The ocular hypertension treatment study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology, 120(6), 701-713. https://doi.org/10.1001/archopht.120.6.701
Katz, M. L., & Gao, C. L. (1995). Vitamin A incorporation into lipofuscin-like inclusions in the retinal pigment epithelium. Mechanisms of Ageing and Development, 84(1), 29-38. https://doi.org/10.1016/0047-6374(95)01633-B
Kevany, B. M., & Palczewski, K. (2010). Phagocytosis of retinal rod and cone photoreceptors. Physiology, 25(1), 8-15. https://doi.org/10.1152/physiol.00038.2009
Kolf-Clauw, M., Chevy, F., Wolf, C., Siliart, B., Citadelle, D., & Roux, C. (1996). Inhibition of 7-dehydrocholesterol reductase by the teratogen AY9944: A rat model for Smith-Lemli-Opitz syndrome. Teratology, 54(3), 115-125. https://doi.org/10.1002/(SICI)1096-9926(199609)54:3%3C;115::AID-TERA1%3E;3.0.CO;2-2
Korade, Z., Xu, L., Shelton, R., & Porter, N. A. (2010). Biological activities of 7-dehydrocholesterol-derived oxysterols: Implications for Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 51(11), 3259-3269. https://doi.org/10.1194/jlr.M009365
Kretzer, F. L., Hittner, H. M., & Mehta, R. S. (1981). Ocular manifestations of the Smith-Lemli-Opitz syndrome. Archives of Ophthalmology, 99(11), 2000-2006. https://doi.org/10.1001/archopht.1981.03930020876013
Larrayoz, I. M., Huang, J. D., Lee, J. W., Pascual, I., & Rodríguez, I. R. (2010). 7-Ketocholesterol-induced inflammation: Involvement of multiple kinase signaling pathways via NFκB but independently of reactive oxygen species formation. Investigative Ophthalmology & Visual Science, 51(10), 4942-4955. https://doi.org/10.1167/iovs.09-4854
Lee, J. H., Wang, J. H., Chen, J., Li, F., Edwards, T. L., Hewitt, A. W., & Liu, G. S. (2019). Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye Research, 68, 31-53. https://doi.org/10.1016/j.preteyeres.2018.08.003
Lee, J. W., Fuda, H., Javitt, N. B., Strott, C. A., & Rodriguez, I. R. (2006). Expression and localization of sterol 27-hydroxylase (CYP27A1) in monkey retina. Experimental Eye Research, 83(2), 465-469. https://doi.org/10.1016/j.exer.2005.11.018
Lehmann, J. M., Kliewer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B., Su, J. L., Sundseth, S. S., Winegar, D. A., Blanchard, D. E., Spencer, T. A., & Willson, T. M. (1997). Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. The Journal of Biological Chemistry, 272(6), 3137-3140. https://doi.org/10.1074/jbc.272.6.3137
Liang, Y., Lin, S., Beyer, T. P., Zhang, Y., Wu, X., Bales, K. R., DeMattos, R. B., May, P. C., Li, S. D., Jiang, X.-C., Eacho, P. I., Cao, G., & Paul, S. M. (2004). A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression secretion and cholesterol homeostasis in astrocyte. Journal of Neurochemistry, 88, 623-634. https://doi.org/10.1111/j.1471-4159.2004.02183.x
Liao, W. L., Heo, G. Y., Dodder, N. G., Reem, R. E., Mast, N., Huang, S., Dipatre, P. L., Turko, I. V., & Pikuleva, I. A. (2011). Quantification of Cholesterol-metabolizing P450s CYP27A1 and CYP46A1 in neural tissues reveals a lack of enzyme−product correlations in human retina but not human brain. Journal of Proteome Research, 10(1), 241-248. https://doi.org/10.1021/pr1008898
Lin, J. B., Mast, N., Bederman, I. R., Li, Y., Brunengraber, H., Björkhem, I., & Pikuleva, I. A. (2016). Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. Journal of Lipid Research, 57(2), 258-264. https://doi.org/10.1194/jlr.M064469
Lin, J. B., Sene, A., Santeford, A., Fujiwara, H., Sidhu, R., Ligon, M. M., Shankar, V. A., Ban, N., Mysorekar, I. U., Ory, D. S., & Apte, R. S. (2018). Oxysterol signatures distinguish age-related macular degeneration from physiologic aging. eBioMedicine, 32, 9-20. https://doi.org/10.1016/j.ebiom.2018.05.035
Luibl, V., Isas, J. M., Kayed, R., Glabe, C. G., Langen, R., & Chen, J. (2006). Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. Journal of Clinical Investigation, 116, 378-385. https://doi.org/10.1172/JCI25843
Lund, E. G., Xie, C., Kotti, T., Turley, S. D., Dietschy, J. M., & Russell, D. W. (2003). Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. Journal of Biological Chemistry, 278(25), 22980-22988. https://doi.org/10.1074/jbc.M303415200
Lyssenko, N. N., Haider, N., Picataggi, A., Cipollari, E., Jiao, W., Phillips, M. C., Rader, D. J., & Chavali, V. R. M. (2018). Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. Journal of Lipid Research, 59(10), 1927-1939. https://doi.org/10.1194/jlr.M087361
Mast, N., Reem, R., Bederman, I., Huang, S., DiPatre, P. L., Bjorkhem, I., & Pikuleva, I. A. (2011). Cholestenoic acid is an important elimination product of cholesterol in the retina: Comparison of retinal cholesterol metabolism with that in the brain. Investigative Ophthalmology & Visual Science, 52(1), 594-603. https://doi.org/10.1167/iovs.10-6021
Mast, N., Saadane, A., Valencia-Olvera, A., Constans, J., Maxfield, E., Arakawa, H., Li, Y., Landreth, G., & Pikuleva, I. A. (2017). Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology, 123, 465-476. https://doi.org/10.1016/j.neuropharm.2017.06.026
Mazzone, T., & Reardon, C. (1994). Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3. Journal of Lipid Research, 35, 1345-1353. https://doi.org/10.1016/S0022-2275(20)40076-8
Mitchell, P., Liew, G., Gopinath, B., & Wong, T. Y. (2018). Age-related macular degeneration. The Lancet, 392(10153), 1147-1159. https://doi.org/10.1016/S0140-6736(18)31550-2
Moreira, E. F., Larrayoz, I. M., Lee, J. W., & Rodríguez, I. R. (2009). 7-Ketocholesterol is present in lipid deposits in the primate retina: Potential implication in the induction of VEGF and CNV formation. Investigative Ophthalmology & Visual Science, 50(2), 523-532. https://doi.org/10.1167/iovs.08-2373
Morgan, S. J., McKenna, P., & Bosanquet, R. C. (1989). Case of cerebrotendinous xanthomatosis. I: Unusual ophthalmic features. British Journal of Ophthalmology, 73(12), 1011-1014. https://doi.org/10.1136/bjo.73.12.1011
Murphy, R. C., & Johnson, K. M. (2008). Cholesterol, reactive oxygen species, and the formation of biologically active mediators. The Journal of Biological Chemistry, 283, 15521-15525. https://doi.org/10.1074/jbc.R700049200
Mustafi, D., Engel, A. H., & Palczewski, K. (2009). Structure of cone photoreceptors. Progress in Retinal and Eye Research, 28(4), 289-302. https://doi.org/10.1016/j.preteyeres.2009.05.003
Nowaczyk, M. J., & Irons, M. B. (2012). Smith-Lemli-Opitz syndrome: Phenotype, natural history, and epidemiology. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 160(4), 250-262.
Oh, M. J., Zhang, C., LeMaster, E., Adamos, C., Berdyshev, E., Bogachkov, Y., Kohler, E. E., Baruah, J., Fang, Y., Schraufnagel, D. E., Wary, K. K., & Wary, K. K. (2016). Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. Journal of Lipid Research, 57(5), 791-808. https://doi.org/10.1194/jlr.M062539
Olivier, E., Dutot, M., Regazzetti, A., Leguillier, T., Dargere, D., Auzeil, N., Laprévote, O., & Rat, P. (2016). P2X7-pannexin-1 and amyloid β-induced oxysterol input in human retinal cell: Role in age-related macular degeneration? Biochimie, 127, 70-78. https://doi.org/10.1016/j.biochi.2016.04.014
Omarova, S., Charvet, C. D., Reem, R. E., Mast, N., Zheng, W., Huang, S., Peachey, N. S., & Pikuleva, I. A. (2012). Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. The Journal of Clinical Investigation, 122(8), 3012-3023. https://doi.org/10.1172/JCI63816
Ong, J. M., Aoki, A. M., Seigel, G. M., Sacerio, I., Castellon, R., Nesburn, A. B., & Kenney, M. C. (2003). Oxysterol-induced toxicity in R28 and ARPE-19 cells. Neurochemical Research, 28(6), 883-891. https://doi.org/10.1023/A:1023223409798
Papadopoulos, V., Aghazadeh, Y., Fan, J., Campioli, E., Zirkin, B., & Midzak, A. (2015). Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Molecular and Cellular Endocrinology, 408, 90-98. https://doi.org/10.1016/j.mce.2015.03.014
Petrov, A. M., Astafev, A. A., Mast, N., Saadane, A., El-Darzi, N., & Pikuleva, I. A. (2019). The interplay between retinal pathways of cholesterol output and its effects on mouse retina. Biomolecules, 9(12), 867. https://doi.org/10.3390/biom9120867
Petrov, A. M., Lam, M., Mast, N., Moon, J., Li, Y., Maxfield, E., & Pikuleva, I. A. (2019). CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics, 16(3), 710-724. https://doi.org/10.1007/s13311-019-00737-0
Pfeffer, B. A., Xu, L., Porter, N. A., Rao, S. R., & Fliesler, S. J. (2016). Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Experimental Eye Research, 145, 297-316. https://doi.org/10.1016/j.exer.2016.01.016
Pikuleva, I. A., & Curcio, C. A. (2014). Cholesterol in the retina: The best is yet to come. Progress in Retinal and Eye Research, 41, 64-89. https://doi.org/10.1016/j.preteyeres.2014.03.002
Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S., McNamara, J. O., & Williams, S. M. (2001). The retina, neuroscience (2nd ed.). Sinauer Associates, Inc.
Radhakrishnan, A., Yukio Ikeda, Y., Kwon, H. J., Brown, M. S., & Goldstein, J. L. (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. The National Academy of Sciences of the USA, 104(16), 6511-6518.
Ramirez, D. M., Andersson, S., & Russell, D. W. (2008). Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. Journal of Comparative Neurology, 507(5), 1676-1693. https://doi.org/10.1002/cne.21605
Remington, L. A. (2012). Chapter 4 - Retina. In L. A. Remington (Ed.), Clinical anatomy and physiology of the visual system (Third ed.) (pp. 61-92). Butterworth-Heinemann.
Repa, J. J., Lund, E. G., Horton, J. D., Leitersdorf, E., Russell, D. W., Dietschy, J. M., & Turley, S. D. (2000). Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia reversal by cholic acid feeding. Journal of Biological Chemistry, 275(50), 39685-39692. https://doi.org/10.1074/jbc.M007653200
Robman, L., Guymer, R., Woods, R., Ward, S., Wolfe, R., Phung, J., Hodgson, L., Makeyeva, G., Aung, K. Z., Gilbert, T., Lockery, J., Le-Pham, Y.-A., Orchard, S., Storey, E., Abhayaratna, W., Reid, D., Ernst, M. E., Nelson, M., Reid, C., & McNeil, J. (2017). Age-related macular degeneration in a randomized controlled trial of low-dose aspirin: Rationale and study design of the ASPREE-AMD study. Contemporary Clinical Trials Communications, 6, 105-114. https://doi.org/10.1016/j.conctc.2017.03.005
Rodriguez, I. R., Alam, S., & Lee, J. W. (2004a). Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Investigative Ophthalmology & Visual Science, 45(8), 830-2837.
Rodriguez, I. R., Alam, S., & Lee, J. W. (2004b). Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Investigative Ophthalmology & Visual Science, 45(8), 2830-2837. https://doi.org/10.1167/iovs.04-0075
Rodriguez, I. R., Clark, M. E., Lee, J. W., & Curcio, C. A. (2014). 7-Ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Experimental Eye Research, 128, 151-155. https://doi.org/10.1016/j.exer.2014.09.009
Rodriguez, I. R., & Fliesler, S. J. (2009). Photodamage generates 7-keto-and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochemistry and Photobiology, 85(5), 1116-1125. https://doi.org/10.1111/j.1751-1097.2009.00568.x
Rosen, H., Reshef, A., Maeda, N., Lippoldt, A., Shpizen, S., Triger, L., Eggertsen, G., Björkhem, I., & Leitersdorf, E. (1998). Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. Journal of Biological Chemistry, 273(24), 14805-14812. https://doi.org/10.1074/jbc.273.24.14805
Saadane, A., Mast, N., Charvet, C. D., Omarova, S., Zheng, W., Huang, S. S., Kern, T. S., Peachey, N. S., & Pikuleva, I. A. (2014). Retinal and nonocular abnormalities in Cyp27a1−/− Cyp46a1−/− mice with dysfunctional metabolism of cholesterol. The American Journal of Pathology, 184(9), 2403-2419. https://doi.org/10.1016/j.ajpath.2014.05.024
Saadane, A., Mast, N., Dao, T., Ahmad, B., & Pikuleva, I. A. (2016). Retinal hypercholesterolemia triggers cholesterol accumulation and esterification in photoreceptor cells. Journal of Biological Chemistry, 291(39), 20427-20439. https://doi.org/10.1074/jbc.M116.744656
Saadane, A., Mast, N., Trichonas, G., Chakraborty, D., Hammer, S., Busik, J. V., Grant, M. B., & Pikuleva, I. A. (2019). Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal. The American Journal of Pathology, 189(2), 405-425. https://doi.org/10.1016/j.ajpath.2018.10.013
Scholz, R., Caramoy, A., Bhuckory, M. B., Rashid, K., Chen, M., Xu, H., Grimm, C., & Langmann, T. (2015). Targeting translocator protein (18 kDa)(TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. Journal of Neuroinflammation, 12(1), 201. https://doi.org/10.1186/s12974-015-0422-5
Shafaati, M., Mast, N., Beck, O., Nayef, R., Heo, G. Y., Björkhem-Bergman, L., Lütjohann, D., Björkhem, I., & Pikuleva, I. A. (2010). The antifungal drug voriconazole is an efficient inhibitor of brain cholesterol 24S-hydroxylase in vitro and in vivo. Journal of Lipid Research, 51(2), 318-323. https://doi.org/10.1194/jlr.M900174-JLR200
Shi, G., Chen, S., Wandu, W. S., Ogbeifun, O., Nugent, L. F., Maminishkis, A., Hinshaw, S. J. H., Rodriguez, I. R., & Gery, I. (2015). Inflammasomes induced by 7-ketocholesterol and other stimuli in RPE and in bone marrow-derived cells differ markedly in their production of IL-1β and IL-18. Investigative Ophthalmology & Visual Science, 56(3), 1658-1664. https://doi.org/10.1167/iovs.14-14557
Solomon, S. G., & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8(4), 276-286. https://doi.org/10.1038/nrn2094
Steinberg, R. H. (1985). Interactions between the retinal pigment epithelium and the neural retina. Documenta Ophthalmologica, 60(4), 327-346. https://doi.org/10.1007/BF00158922
Storti, F., Raphael, G., Griesser, V., Klee, K., Drawnel, F., Willburger, C., Scholz, R., Langmann, T., von Eckardstein, A., Fingerle, J., Grimm, C., Maugeais, C., & Grimm, C. (2017). Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells. Experimental Eye Research, 165, 65-77. https://doi.org/10.1016/j.exer.2017.09.008
Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85(3), 845-881. https://doi.org/10.1152/physrev.00021.2004
Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology, 121(11), 2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013
Tserentsoodol, N., Sztein, J., Campos, M., Gordiyenko, N. V., Fariss, R. N., Lee, J. W., Fliesler, S. J., & Rodriguez, I. R. (2006). Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Molecular Vision, 12(1306e), 1318.
Urano, Y., Ochiai, S., & Noguchi, N. (2013). Suppression of amyloid-β production by 24S-hydroxycholesterol via inhibition of intracellular amyloid precursor protein trafficking. The FASEB Journal, 27(10), 4305-4315. https://doi.org/10.1096/fj.13-231456
Wang, L., Clark, M. E., Crossman, D. K., Kojima, K., Messinger, J. D., Mobley, J. A., & Curcio, C. A. (2010). Abundant lipid and protein components of drusen. PLoS One, 5(4), e10329.
Wang, S., & Bao, X. (2019). Hyperlipidemia, blood lipid level, and the risk of glaucoma: A meta-analysis. Investigative Ophthalmology & Visual Science, 60(4), 1028-1043. https://doi.org/10.1167/iovs.18-25845
Wassif, C. A., Zhu, P., Kratz, L., Krakowiak, P. A., Battaile, K. P., Weight, F. F., Grinberg, A., Steiner, R. D., Nwokoro, N. A., Kelley, R. I., Stewart, R. R., Porter, F. D., & Stewart, R. R. (2001). Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith-Lemli-Opitz syndrome. Human Molecular Genetics, 10(6), 555-564. https://doi.org/10.1093/hmg/10.6.555
Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: A review. JAMA, 311(18), 1901-1911. https://doi.org/10.1001/jama.2014.3192
Wright, A. F., Chakarova, C. F., El-Aziz, M. M. A., & Bhattacharya, S. S. (2010). Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait. Nature Reviews Genetics, 11(4), 273-284. https://doi.org/10.1038/nrg2717
Xu, L., Davis, T. A., & Porter, N. A. (2009). Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. Journal of the American Chemical Society, 131(36), 13037-13044. https://doi.org/10.1021/ja9029076
Xu, L., Korade, Z., & Porter, N. A. (2010). Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: Product and mechanistic studies. Journal of the American Chemical Society, 132(7), 2222-2232. https://doi.org/10.1021/ja9080265
Xu, L., Liu, W., Sheflin, L. G., Fliesler, S. J., & Porter, N. A. (2011). Novel oxysterols observed in tissues and fluids of AY9944-treated rats: A model for Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 52(10), 1810-1820. https://doi.org/10.1194/jlr.M018366
Xu, L., Sheflin, L. G., Porter, N. A., & Fliesler, S. J. (2012). 7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(6), 877-883. https://doi.org/10.1016/j.bbalip.2012.03.001
Yang, C., Xie, L., Gu, Q., Qiu, Q., Wu, X., & Yin, L. (2019). 7-Ketocholesterol disturbs RPE cells phagocytosis of the outer segment of photoreceptor and induces inflammation through ERK signaling pathway. Experimental Eye Research, 189, 107849. https://doi.org/10.1016/j.exer.2019.107849
Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L., & Brown, M. S. (2002). Crucial step in cholesterol homeostasis. Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110, 489-500. https://doi.org/10.1016/S0092-8674(02)00872-3
Zhao, Y., & Mazzone, T. (1999). LDL receptor binds newly synthesized apoE in macrophages: A precursor pool for apoE secretion. Journal of Lipid Research, 40, 1029-1035. https://doi.org/10.1016/S0022-2275(20)33506-9
Zheng, W., Reem, R. E., Omarova, S., Huang, S., DiPatre, P. L., Charvet, C. D., Curcio, C. A., & Pikuleva, I. A. (2012). Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS One, 7(5), e37926.