Steroid hormones and human choriogonadotropin influence the distribution of alpha6-integrin and desmoplakin 1 in gland-like endometrial epithelial spheroids.
3D cell culture system
Cell adhesion
Endometrial receptivity
Epithelial polarity
Human endometrium
Ishikawa cell line
Journal
Histochemistry and cell biology
ISSN: 1432-119X
Titre abrégé: Histochem Cell Biol
Pays: Germany
ID NLM: 9506663
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
accepted:
23
12
2020
pubmed:
28
1
2021
medline:
2
9
2021
entrez:
27
1
2021
Statut:
ppublish
Résumé
In human glandular endometrial epithelial cells, desmosomal and adherens junction proteins have been shown to extend from a subapically restricted lateral position to the entire lateral membrane during the implantation window of the menstrual cycle. Similarly, a menstrual cycle stage-dependent redistribution of the extracellular matrix adhesion protein α6-integrin has been reported. These changes are believed to be important for endometrial receptiveness and successful embryo implantation. To prove the hypothesis that steroid hormones and human choriogonadotropin can induce the redistribution of these adhesion molecules, we used the human endometrial cell line Ishikawa in a 3D culture system. Gland-like spheroids were grown in reconstituted basement membrane (Matrigel™). The lumen-bearing spheroids were treated for 2 or 4 days with ovarian steroids or human choriogonadotropin and then assessed by immunofluorescence microscopy. In addition, human endometrial biopsies were obtained from patients, who were in therapy for assisted reproductive technology, and were examined in parallel. Lateral redistribution of the desmosomal plaque protein desmoplakin 1 was observed in the spheroids treated either with progesterone, medroxyprogesterone acetate or human choriogonadotropin. Furthermore, the extracellular matrix adhesion protein α6-integrin showed an increased lateral membrane localization upon gestagen stimulation in the 3D culture system. The results of this study demonstrate that the 3D endometrial Ishikawa cell culture might be suited as an experimental model system to prove the effect of hormonal changes like those occurring during the window of implantation.
Identifiants
pubmed: 33502623
doi: 10.1007/s00418-020-01960-z
pii: 10.1007/s00418-020-01960-z
pmc: PMC8134296
doi:
Substances chimiques
Chorionic Gonadotropin
0
Desmoplakins
0
Gonadal Steroid Hormones
0
Integrin alpha6
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
581-591Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : 346386149
Organisme : Deutsche Forschungsgemeinschaft
ID : 363055819/GRK2415
Organisme : Medizinische Fakultät, RWTH Aachen University
ID : START 125/18
Références
Acta Anat (Basel). 1995;153(1):12-9
pubmed: 8560955
Int J Mol Med. 2009 Feb;23(2):173-80
pubmed: 19148540
Cell Tissue Res. 2010 Jan;339(1):269-80
pubmed: 19693543
Cochrane Database Syst Rev. 2016 May 20;(5):CD011537
pubmed: 27195724
Hum Reprod Update. 2002 Jul-Aug;8(4):333-43
pubmed: 12206468
J Morphol. 2006 Jan;267(1):103-8
pubmed: 16258945
Biochim Biophys Acta. 2012 Dec;1822(12):1943-50
pubmed: 22683339
Hum Reprod. 2016 Jul;31(7):1552-61
pubmed: 27122490
Endocrinology. 2018 Jan 1;159(1):506-518
pubmed: 29029020
Hum Reprod. 1992 Jul;7(6):876-82
pubmed: 1500489
J Cell Biol. 1963 May;17:375-412
pubmed: 13944428
Cell Regul. 1991 Jun;2(6):427-38
pubmed: 1883873
Fertil Steril. 1999 Sep;72(3):522-6
pubmed: 10519628
Breast Cancer Res. 2005;7(6):R1036-50
pubmed: 16457685
J Assist Reprod Genet. 2018 Sep;35(9):1703-1712
pubmed: 29974367
Fertil Steril. 2004 Nov;82(5):1264-72
pubmed: 15533340
Hum Reprod Update. 2014 Jul-Aug;20(4):530-41
pubmed: 24664156
Biol Reprod. 2000 Dec;63(6):1764-73
pubmed: 11090447
Histochem Cell Biol. 2012 Jun;137(6):777-90
pubmed: 22327832
Biol Reprod. 2012 Mar 30;86(3):87
pubmed: 21832169
Proc Natl Acad Sci U S A. 1990 Nov;87(22):8970-4
pubmed: 2247472
J Clin Endocrinol Metab. 2002 Jun;87(6):2954-9
pubmed: 12050279
Ann Anat. 1994 Jan;176(1):53-60
pubmed: 8304592
In Vivo. 2020 Jul-Aug;34(4):1951-1963
pubmed: 32606167
Genome Biol. 2007;8(5):215
pubmed: 17543136
Int J Dev Biol. 1996 Feb;40(1):389-93
pubmed: 8735953
Arch Gynecol Obstet. 2019 Apr;299(4):1165-1172
pubmed: 30659362
Biol Reprod. 2010 Feb;82(2):235-45
pubmed: 19571263
Fertil Steril. 2006 Nov;86(5):1344-55
pubmed: 16978615
Hum Reprod. 2010 May;25(5):1127-36
pubmed: 20176592
Reprod Biomed Online. 2013 Nov;27(5):453-60
pubmed: 24055396
J Immunol. 1984 Oct;133(4):1710-5
pubmed: 6206131
J Cell Sci. 1992 Dec;103 ( Pt 4):1243-7
pubmed: 1283165
Br J Obstet Gynaecol. 1984 Jul;91(7):685-9
pubmed: 6743610
Curr Opin Cell Biol. 2001 Oct;13(5):541-5
pubmed: 11544021
Acta Anat (Basel). 1992;144(1):36-8
pubmed: 1514357
Biol Reprod. 2003 Feb;68(2):457-64
pubmed: 12533408
J Exp Zool. 1993 Sep 1;266(6):541-58
pubmed: 8371097
Mol Cell Endocrinol. 2007 Jun 30;272(1-2):14-21
pubmed: 17548147
J Clin Invest. 1992 Jul;90(1):188-95
pubmed: 1378853
Anat Embryol (Berl). 1982;163(4):367-70
pubmed: 7091705
Acta Histochem. 2004;106(5):345-51
pubmed: 15530549
Hum Reprod. 2015 Apr;30(4):906-16
pubmed: 25662813
N Engl J Med. 2001 Nov 8;345(19):1400-8
pubmed: 11794174
Int J Mol Sci. 2019 Jan 19;20(2):
pubmed: 30669470
Hum Cell. 2002 Sep;15(3):104-17
pubmed: 12703541
Fertil Steril. 2011 Dec;96(6):1370-1374.e1
pubmed: 22047664
J Steroid Biochem Mol Biol. 1996 Sep;59(1):31-9
pubmed: 9009235
Am J Pathol. 1995 Mar;146(3):717-26
pubmed: 7887452
Matrix Biol. 1999 Feb;18(1):5-17
pubmed: 10367727