Salt Mediated Modulation of Autolysis of Thermolysin-Like Proteinase, Salilysin, Isolated from a Moderate Halophile, Chromohalobacter salexigens DSM3043.
Autolysis
Chromohalobacter salexigens
Halophilic
Salilysin
Salting-out salt
Thermolysin
Journal
The protein journal
ISSN: 1875-8355
Titre abrégé: Protein J
Pays: Netherlands
ID NLM: 101212092
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
accepted:
18
01
2021
pubmed:
28
1
2021
medline:
7
10
2021
entrez:
27
1
2021
Statut:
ppublish
Résumé
Halophilic salilysin is first synthesized as a pro-form, which has been shown autolysis activity to process pro-region (55 amino acids long) three times to form intermediate 1 (I1), intermediate 2 (I2) and final mature (M) salilysin. The autolysis of I1- to M-form salilysin in vitro was significantly accelerated with increasing NaCl concentration up to 4 M. Strong salting-out salts, (NH
Identifiants
pubmed: 33502674
doi: 10.1007/s10930-021-09964-x
pii: 10.1007/s10930-021-09964-x
doi:
Substances chimiques
Bacterial Proteins
0
Sodium Chloride
451W47IQ8X
Peptide Hydrolases
EC 3.4.-
salilysin
EC 3.4.-
Thermolysin
EC 3.4.24.27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
223-233Références
Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
doi: 10.1128/MMBR.62.2.504-544.1998
Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2004) Highly efficient renaturation of beta-lactamase isolated from moderately halophilic bacteria. FEBS Lett 558:7–12
doi: 10.1016/S0014-5793(03)01508-4
Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164
doi: 10.1016/S0301-4622(00)00126-5
Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98
doi: 10.1007/s007920050142
Tanaka R, Yamasaki S, Ishibashi M, Tokunaga H, Arakawa T, Tokunaga M (2020) Salt-enhanced processing, proteolytic activity and stability of halophilic thermolysin-like proteinase, salilysin, isolated from a moderate halophile, Chromohalobacter salexigens DSM3043. Int J Biol Macromol 164:77–86
doi: 10.1016/j.ijbiomac.2020.07.050
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
doi: 10.1038/227680a0
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
doi: 10.1016/0003-2697(85)90442-7
Mizukami M, Tokunaga H, Onishi H, Ueno Y, Hanagata H, Miyazaki N, Kiyose N, Ito Y, Ishibashi M, Hagihara Y, Arakawa T, Miyauchi A, Tokunaga M (2015) Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif 105:23–32
doi: 10.1016/j.pep.2014.09.017
Hofmeister F (1888) Zur Lehre von cer Wirkung der Salze. Arch Exp Pathol Pharmacol 24:247–260
doi: 10.1007/BF01918191
Ishibashi M, Arakawa T, Tokunaga M (2003) Salting-in effects offset MgCl
doi: 10.2174/0929866033478546
Ishibashi M, Tsumoto K, Ejima D, Arakawa T, Tokunaga M (2005) Characterization of arginine as a solvent additive: a halophilic enzyme as a model protein. Protein Pept Lett 12:649–653
doi: 10.2174/0929866054696136
Arakawa T, Timasheff SN (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 24:6545–6552
doi: 10.1021/bi00268a034
Wang A, Robertson AD, Bolen DW (1995) Effects of a naturally occurring compatible osmolytes on the internal dynamics of ribonuclease. Biochemistery 34:15096–15104
doi: 10.1021/bi00046a016
Baskakov IV, Bolen DW (1998) Monitoring the sizes of denatured ensembles of staphylococcal nuclease proteins: implications regarding m values, intermediates, and thermodynamics. Biochemistry 37:18010–18017
doi: 10.1021/bi981849j
Arakawa T, Timasheff SN (1984) Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23:5912–5923
doi: 10.1021/bi00320a004
Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981
doi: 10.1016/j.tibs.2016.08.013
Demidyuk IV, Gasanov EV, Safina DR, Kostrov SV (2008) Structural organization of precursors of thermolysin-like proteinases. Protein J 27:343–354
doi: 10.1007/s10930-008-9143-2
Demidyuk IV, Kalashnikov AE, Gromova TY, Gasanov EV, Safina DR, Zabolotskaya MV, Rudenskaya GN, Kostrov SV (2006) Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. Protein Expr Purif 47:551–561
doi: 10.1016/j.pep.2005.12.005
Demidyuk IV, Gromova TY, Polyakov KM, Melik-Adamyan WR, Kuranova IP, Kostrov SV (2010) Crystal structure of the protealysin precursor: insights into propeptide function. J Biol Chem 285:2003–2013
doi: 10.1074/jbc.M109.015396
Inouye K, Kusano M, Hashida Y, Minoda M, Yasukawa K (2007) Engineering, expression, purification, and production of recombinant thermolysin. Biotechnol Annu Rev 13:43–64
doi: 10.1016/S1387-2656(07)13003-9