Role of Cholesterol in Transmembrane Dimerization of the ErbB2 Growth Factor Receptor.

Cholesterol ErbB2 growth factor receptor Her2 dimer Juxtamembrane dimer Martini coarse-grain simulations Metadynamics

Journal

The Journal of membrane biology
ISSN: 1432-1424
Titre abrégé: J Membr Biol
Pays: United States
ID NLM: 0211301

Informations de publication

Date de publication:
06 2021
Historique:
received: 30 09 2020
accepted: 05 01 2021
pubmed: 29 1 2021
medline: 7 4 2022
entrez: 28 1 2021
Statut: ppublish

Résumé

The association of ErbB2 growth factor receptors is critical for cell growth and potentiates tumor proliferation in several cancer types. An important aspect in ErbB2 association is the role of lipids such as cholesterol, especially since their metabolism is often reprogrammed in cancer cells. Here, we have coupled metadynamics with coarse-grain simulations to identify cholesterol effects in the transmembrane dimerization of ErbB2 receptors. Overall, cholesterol interactions are observed with the receptor that directly tunes the association energetics. Several dimer conformations are identified both in the presence and absence of cholesterol, although the dimer regime appears to be more favorable in the presence of cholesterol. We observe an overall modulation of the underlying energy profile and the symmetric active and inactive conformational states are not distinguished in the presence of cholesterol. We show that cholesterol binds to the receptor transmembrane domain at a site (CRAC motif) that overlaps with the dimer interface (SmXXXSm motif). The competition between the transmembrane interactions and cholesterol interactions decides the final conformational landscape. Our work is an important step toward characterizing cholesterol effects in ErbB2 membrane receptor function.

Identifiants

pubmed: 33506276
doi: 10.1007/s00232-021-00168-z
pii: 10.1007/s00232-021-00168-z
doi:

Substances chimiques

Cholesterol 97C5T2UQ7J
ERBB2 protein, human EC 2.7.10.1
Receptor, ErbB-2 EC 2.7.10.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

301-310

Références

Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69
pubmed: 22355588 pmcid: 3216556
Beevers AJ, Kukol A (2006) Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains. J Mol Graphics Modell 25(2):226–233
Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365
pubmed: 11357143
Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283(11):6950–6956
pubmed: 18178548
Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS (2016) Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. Biochim Biophys Acta 6:1254–61
Bocharov EV, Sharonov GV, Bocharova OV, Pavlov KV (2017) Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. Biochim Biophys Acta Biomembr 9:1417–1429
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS (2015) HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions. J Mol Biol 428(1):52–61
pubmed: 26585403
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS (2016) Her2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions. J Mol Biol 428:52–61
pubmed: 26585403
Cymer F, Veerappan A (2012) Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta Biomembr 4:963–973
Dubey V, Prasanna X, Sengupta D (2017) Estimating the lipophobic contributions in model membranes. J Phys Chem B 121:2111–2120
pubmed: 28186760
Duneau JP, Khao J, Sturgis JN (2017) Lipid perturbation by membrane proteins and the lipophobic effect. Biochim Biophys Acta 1859:126–134
Endres NF, Engel K, Das R, Kovacs E, Kuriyan J (2011) Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol 21(6):777–784
pubmed: 21868214 pmcid: 3232302
Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE, Groves JT, Kuriyan J (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152(3):543–556
pubmed: 23374349 pmcid: 3718647
Escher C, Cymer F, Schneider D (2009) Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J Mol Biol 389(1):10–16
pubmed: 19361517
Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including crac, carc, and tilted domains. Front Physiol 4:31
pubmed: 23450735 pmcid: 3584320
Finger C, Escher C, Schneider D (2009) The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signaling 2(89):ra56
Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci USA 99(25):15937–15940
pubmed: 12461170
Ge G, Wu J, Lin Q (2001) Effect of membrane fluidity on tyrosine kinase activity of reconstituted epidermal growth factor receptor. Biochem Biophys Res Commun 282(2):511–514
pubmed: 11401489
Gerber D, Sal-Man N, Shai Y (2004) Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 279(20):21177–21182
pubmed: 14985340
Gopal SM, Pawar AB, Wassenaar TA, Sengupta D (2020) Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers. Chem Phys Lipids 230:104911
pubmed: 32353357
Grouleff J, Irudayam SJ, Skeby KK (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta Biomembr 9:1783–1795
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2. Å Structure of the human [Formula: see text]2-adrenergic receptor. Structure 16(6):897–905
pubmed: 18547522 pmcid: 2601552
Hasan M, Patel D, Ellis N, Brown SP, Lewandowski JR, Dixon AM (2019) Modulation of transmembrane domain interactions in neu receptor tyrosine kinase by membrane fluidity and cholesterol. J Membr Biol 252(4–5):357–369
pubmed: 31222471
Hedger G (2016) Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim Biophys Acta Biomembr 10:2390–2400
Hedger G, Shorthouse D, Koldsø H, Sansom MS (2016) Free energy landscape of lipid interactions with regulatory binding sites on the transmembrane domain of the EGF receptor. J Phys Chem B 120(33):8154–8163
pubmed: 27109430 pmcid: 5002933
Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138
pubmed: 18216769
Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137(7):1293–1307
pubmed: 19563760 pmcid: 2814540
Kharche SA, Sengupta D (2020) Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Op Struct Biol 61:191–197
Kovács T, Batta G, Hajdu T, Szabó Á, Váradi T, Zákány F, Csomós I, Szöllosi J, Nagy P (2016) The dipole potential modifies the clustering and ligand binding affinity of ErbB proteins and their signaling efficiency. Sci Rep 6(1):1–11
Lelimousin M, Limongelli V, Sansom MS (2016) Conformational changes in the epidermal growth factor receptor: role of the transmembrane domain investigated by coarse-grained MetaDynamics free energy calculations. J Am Chem Soc 138(33):10611–10622. https://doi.org/10.1021/jacs.6b05602
doi: 10.1021/jacs.6b05602 pubmed: 27459426 pmcid: 5010359
Li E, Hristova K (2010) Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adh Migr 4(2):249–254
pubmed: 20168077 pmcid: 2900622
Li E, Wimley WC (2012) Transmembrane helix dimerization: beyond the search for sequence motifs. Biochim Biophys Acta Biomembr 2:183–193
Li YC, Park MJ, Ye SK, Kim CW, Kim YN (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168(4):1107–1118
pubmed: 16565487 pmcid: 1606567
Maeda R, Sato T, Okamoto K, Yanagawa M, Sako Y (2018) Lipid-protein interplay in dimerization of juxtamembrane domains of epidermal growth factor receptor. Biophys J 114(4):893–903
pubmed: 29490249 pmcid: 5984969
Marrink SJ, Risselada JH, Yefimov S, Tieleman PD, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824
pubmed: 17569554
Maruyama IN (2015) Activation of transmembrane cell-surface receptors via a common mechanism? The “rotation model”. BioEssays 37(9):959–967
pubmed: 26241732 pmcid: 5054922
Matsushita C, Tamagakia H, Miyazawaa Y, Aimotoa S, Smith SO, Sato T, Tamagaki H, Miyazawa Y, Aimoto S (2013) Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides. Proc Natl Acad Sci USA 110(5):1646–51
pubmed: 23319611
Mendrola JM, Berger MB, King MC, Lemmon MA (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 277(7):4704–4712
pubmed: 11741943
Mineev KS, Panova SV, Bocharova OV, Bocharov EV, Arseniev AS (2015) The membrane mimetic affects the spatial structure and mobility of EGFR transmembrane and juxtamembrane domains. Biochemistry 54(41):6295–6298
pubmed: 26440883
Mohole M, Prasanna X, Sengupta D, Chattopadhyay A (2018) Molecular signatures of cholesterol interaction with serotonin receptors. In: Biochemical and biophysical roles of cell surface molecules. Springer, New York, pp 151–160
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366(1):2–16
pubmed: 16377102
Paila YD, Chattopadhyay A (2009) The function of g-protein coupled receptors and membrane cholesterol: specific or general interaction? Glyco J 26:711
Pal S, Chakraborty H, Bandari S, Yahioglu G, Suhling K, Chattopadhyay A (2016) Molecular rheology of neuronal membranes explored using a molecular rotor: implications for receptor function. Chem Phys Lipids 196:69–75
pubmed: 26879380
Pawar AB, Sengupta D (2019) Resolving the conformational dynamics of ErbB growth factor receptor dimers. J Struct Biol 207(2):225–233
pubmed: 31163211
Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D (2015) Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 17:1390–1398
pubmed: 25427292
Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD (2019) Cholesterol metabolism, pancreatic [Formula: see text]-cell function and diabetes. Biochim Biophys Acta (BBA)-Mol Basis Disease 1865(9):2149–2156
Pike LJ, Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41(32):10315–10322
pubmed: 12162747
Prakash A, Janosi L, Doxastakis M (2010) Self-association of models of transmembrane domains of ErbB receptors in a lipid bilayer. Biophys J 99(11):3657–3665
pubmed: 21112290 pmcid: 2998631
Prakash A, Janosi L, Doxastakis M (2011) GxxxG motifs, phenylalanine, and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors. Biophys J 101(8):1949–1958
pubmed: 22004749 pmcid: 3192960
Prasanna X, Praveen PJ, Sengupta D (2013) Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. Phys Chem Chem Phys 15(43):19031–19041
pubmed: 24096861
Prasanna X, Mohole M, Chattopadhyay A, Sengupta D (2020) Role of cholesterol-mediated effects in gpcr heterodimers. Chem Phys Lipids 227:104852
pubmed: 31866438
Psachoulia E, Fowler PW, Bond PJ, Sansom MSP (2008) HelixHelix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization. Biochemistry 47:10503–10512
pubmed: 18783247
Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 115(6):1331–1340
pubmed: 11884532
Roskoski R (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74
pubmed: 24269963
Sarkar P, Chattopadhyay A (2020) Cholesterol interaction motifs in G protein-coupled receptors: slippery hot spots? Wiley Interdiscip Rev Syst Biol Med 12:e1481
pubmed: 32032482
Schneider D (2017) Border controls: lipids control proteins and proteins control lipids. Biochim Biophys Acta Biomembr 1859(4):507–508
pubmed: 28024797
Semrau S, Schmidt T (2009) Membrane heterogeneity—from lipid domains to curvature effects. Soft Matter 5(17):3174–3186
Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta (BBA) Biomembr 1848:1775–1782
Sengupta D, Prasanna X, Mohole M, Chattopadhyay A (2018) Exploring GPCR-lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B 122:5727–5737
pubmed: 29685028
Sharpe S, Barber KR, Grant CWM (2002) Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Biochemistry 41:2341–2353
pubmed: 11841227
Soumana OS, Garnier N, Genest M (2008) Insight into the recognition patterns of the ErbB receptor family transmembrane domains: heterodimerization models through molecular dynamics search. Eur Biophys J 37(6):851–864
Sternberg MJ, Gullick WJ (1990) A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng Des Sel 3(4):245–248
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–18
Tribello, GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) Plumed 2: new feathers for an old bird. Comput Phys Commun 185:604–613
Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124
pubmed: 2642958 pmcid: 2642958
Viegas A, Yin DM, Borggräfe J, Viennet T, Falke M, Schmitz A, Famulok M, Etzkorn M (2020) Molecular architecture of a network of potential intracellular EGFR modulators: ARNO, CaM, phospholipids, and the juxtamembrane segment. Structure 28(1):54–62
pubmed: 31780432
Zhang J, Lazaridis T (2009) Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues. Biophys J 96:4418–4427
pubmed: 19486666 pmcid: 2711494
Zhang Y, Zhang J, Li Q, Wu Y, Wang D, Xu L, Zhang Y, Wang S, Wang T, Liu F, Zaky MY, Hou S, Liu S, Zou K, Lei H, Zou L, Liu H (2019) Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. J Cell Commun Signaling 17(1):1–12
Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR (2005) Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Eur J Clin Invest European 115(4):959–968

Auteurs

Aiswarya B Pawar (AB)

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

Durba Sengupta (D)

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. d.sengupta@ncl.res.in.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. d.sengupta@ncl.res.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH