Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis.
acrophage
dynamic foam cell
lipoprotein internalization
lipoprotein uptake
reverse cholesterol transport
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
22
12
2020
received:
13
10
2020
accepted:
15
01
2021
pubmed:
29
1
2021
medline:
10
11
2021
entrez:
28
1
2021
Statut:
ppublish
Résumé
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Substances chimiques
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
6154-6167Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Accad, M. , Smith, S. J. , Newland, D. L. , Sanan, D. A. , King, L. E., Jr. , Linton, M. F. , Fazio, S. , & Farese R. V., Jr. (2000). Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA: Cholesterol acyltransferase 1. Journal of Clinical Investigation, 105(6), 711-719. https://doi.org/10.1172/JCI9021
Ackers, I. , Szymanski, C. , Duckett, K. J. , Consitt, L. A. , Silver, M. J. , & Malgor, R. (2018). Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovascular Pathology, 34, 1-8. https://doi.org/10.1016/j.carpath.2018.01.008
Allahverdian, S. , Pannu, P. S. , & Francis, G. A. (2012). Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovascular Research, 95(2), 165-172. https://doi.org/10.1093/cvr/cvs094
Allen, A. M. , & Graham, A. (2012). Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages. Lipids in Health and Disease, 11, 169. https://doi.org/10.1186/1476-511X-11-169
Asmis, R. , & Begley, J. G. (2003). Oxidized LDL promotes peroxide-mediated mitochondrial dysfunction and cell death in human macrophages: A caspase-3-independent pathway. Circulation Research, 92(1), e20-e29. https://doi.org/10.1161/01.res.0000051886.43510.90
Barthwal, M. K. , Anzinger, J. J. , Xu, Q. , Bohnacker, T. , Wymann, M. P. , & Kruth, H. S. (2013). Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLOS One, 8(3), e58054. https://doi.org/10.1371/journal.pone.0058054
Basatemur, G. L. , Jorgensen, H. F. , Clarke, M. C. H. , Bennett, M. R. , & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 16(12),727-744. https://doi.org/10.1038/s41569-019-0227-9
Batista-Gonzalez, A. , Vidal, R. , Criollo, A. , & Carreno, L. J. (2019). New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Frontiers in Immunology, 10, 2993. https://doi.org/10.3389/fimmu.2019.02993
Baumer, Y. , McCurdy, S. , Weatherby, T. M. , Mehta, N. N. , Halbherr, S. , Halbherr, P. , Yamazaki, N. , & Boisvert, W. A. (2017). Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nature Communications, 8(1), 1129. https://doi.org/10.1038/s41467-017-01186-z
Ben, J. , Zhu, X. , Zhang, H. , & Chen, Q. (2015). Class A1 scavenger receptors in cardiovascular diseases. British Journal of Pharmacology, 172(23), 5523-5530. https://doi.org/10.1111/bph.13105
Bowden, K. L. , Bilbey, N. J. , Bilawchuk, L. M. , Boadu, E. , Sidhu, R. , Ory, D. S. , Du, H. , Chan, T. , & Francis, G. A. (2011). Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. Journal of Biological Chemistry, 286(35), 30624-30635. https://doi.org/10.1074/jbc.M111.274381
Bowden, K. L. , Dubland, J. A. , Chan, T. , Xu, Y. H. , Grabowski, G. A. , Du, H. , & Francis, G. A. (2018). LAL (lysosomal acid lipase) promotes reverse cholesterol transport in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(5), 1191-1201. https://doi.org/10.1161/ATVBAHA.117.310507
Bronner, D. N. , Abuaita, B. H. , Chen, X. , Fitzgerald, K. A. , Nuñez, G. , He, Y. , Yin, X. M. , & O'Riordan, M. X. D. (2015). Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity, 43(3), 451-462. https://doi.org/10.1016/j.immuni.2015.08.008
Brown, M. S. , & Goldstein, J. L. (1997). The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89(3), 331-340. https://doi.org/10.1016/s0092-8674(00)80213-5
Brown, M. S. , Ho, Y. K. , & Goldstein, J. L. (1980). The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. Journal of Biological Chemistry, 255(19), 9344-9352.
Buono, C. , Li, Y. , Waldo, S. W. , & Kruth, H. S. (2007). Liver X receptors inhibit human monocyte-derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL. Journal of Lipid Research, 48(11), 2411-2418. https://doi.org/10.1194/jlr.M700170-JLR200
Castilho, G. , Okuda, L. S. , Pinto, R. S. , Iborra, R. T. , Nakandakare, E. R. , Santos, C. X. , Laurindo, F. R. , & Passarelli, M. (2012). ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin-Reversal by a chemical chaperone. International Journal of Biochemistry and Cell Biology, 44(7), 1078-1086. https://doi.org/10.1016/j.biocel.2012.03.016
Castrillo, A. , Joseph, S. B. , Vaidya, S. A. , Haberland, M. , Fogelman, A. M. , Cheng, G. , & Tontonoz, P. (2003). Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Molecular Cell, 12(4), 805-816. https://doi.org/10.1016/s1097-2765(03)00384-8
Chang, T. Y. , Li, B. L. , Chang, C. C. , & Urano, Y. (2009). Acyl-coenzyme A: Cholesterol acyltransferases. American Journal of Physiology-Endocrinology and Metabolism, 297(1), E1-E9. https://doi.org/10.1152/ajpendo.90926.2008
Chaudhari, N. , Talwar, P. , Parimisetty, A. , Lefebvre d'Hellencourt, C. , & Ravanan, P. (2014). A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Frontiers in Cellular Neuroscience, 8, 213. https://doi.org/10.3389/fncel.2014.00213
Chavez-Sanchez, L. , Garza-Reyes, M. G. , Espinosa-Luna, J. E. , Chavez-Rueda, K. , Legorreta-Haquet, M. V. , & Blanco-Favela, F. (2014). The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Human Immunology, 75(4), 322-329. https://doi.org/10.1016/j.humimm.2014.01.012
Chavez-Sanchez, L. , Madrid-Miller, A. , Chavez-Rueda, K. , Legorreta-Haquet, M. V. , Tesoro-Cruz, E. , & Blanco-Favela, F. (2010). Activation of TLR2 and TLR4 by minimally modified low-density lipoprotein in human macrophages and monocytes triggers the inflammatory response. Human Immunology, 71(8), 737-744. https://doi.org/10.1016/j.humimm.2010.05.005
Chen, M. , Li, W. , Wang, N. , Zhu, Y. , & Wang, X. (2007). ROS and NF-kappaB but not LXR mediate IL-1beta signaling for the downregulation of ATP-binding cassette transporter A1. American Journal of Physiology: Cell Physiology, 292(4), C1493-C1501. https://doi.org/10.1152/ajpcell.00016.2006
Chen, Y. , Yang, M. , Huang, W. , Chen, W. , Zhao, Y. , Schulte, M. L. , Volberding, P. , Gerbec, Z. , Zimmermann, M. T. , Zeighami, A. , Demos, W. , Zhang, J. , Knaack, D. A. , Smith, B. C. , Cui, W. , Malarkannan, S. , Sodhi, K. , Shapiro, J. I. , Xie, Z. , … Silverstein, R. L. (2019). Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circulation Research, 125(12), 1087-1102. https://doi.org/10.1161/CIRCRESAHA.119.315833
Choi, S. H. , Harkewicz, R. , Lee, J. H. , Boullier, A. , Almazan, F. , Li, A. C. , Witztum, J. L. , Bae, Y. S. , & Miller, Y. I. (2009). Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circulation Research, 104(12), 1355-1363. https://doi.org/10.1161/CIRCRESAHA.108.192880
Cox, B. E. , Griffin, E. E. , Ullery, J. C. , & Jerome, W. G. (2007). Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. Journal of Lipid Research, 48(5), 1012-1021. https://doi.org/10.1194/jlr.M600390-JLR200
Devries-Seimon, T. , Li, Y. , Yao, P. M. , Stone, E. , Wang, Y. , Davis, R. J. , Flavell, R. , & Tabas, I. (2005). Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology, 171(1), 61-73. https://doi.org/10.1083/jcb.200502078
Ding, Z. , Liu, S. , Wang, X. , Dai, Y. , Khaidakov, M. , Deng, X. , Fan, Y. , Xiang, D. , & Mehta, J. L. (2014). LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: Implications in atherogenesis. Cardiovascular Research, 103(4), 619-628. https://doi.org/10.1093/cvr/cvu114
Ding, Z. , Mizeracki, A. M. , Hu, C. , & Mehta, J. L. (2013). LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochemical and Biophysical Research Communications, 440(2), 210-214. https://doi.org/10.1016/j.bbrc.2013.09.020
Doodnauth, S. A. , Grinstein, S. , & Maxson, M. E. (2019). Constitutive and stimulated macropinocytosis in macrophages: Roles in immunity and in the pathogenesis of atherosclerosis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1765), 20180147. https://doi.org/10.1098/rstb.2018.0147
Duewell, P. , Kono, H. , Rayner, K. J. , Sirois, C. M. , Vladimer, G. , Bauernfeind, F. G. , Abela, G. S. , Franchi, L. , Nuñez, G. , Schnurr, M. , Espevik, T. , Lien, E. , Fitzgerald, K. A. , Rock, K. L. , Moore, K. J. , Wright, S. D. , Hornung, V. , & Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464(7293), 1357-1361. https://doi.org/10.1038/nature08938
Emanuel, R. , Sergin, I. , Bhattacharya, S. , Turner, J. N. , Epelman, S. , Settembre, C. , Diwan, A. , Ballabio, A. , & Razani, B. (2014). Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(9), 1942-1952. https://doi.org/10.1161/ATVBAHA.114.303342
Fazio, S. , Major, A. S. , Swift, L. L. , Gleaves, L. A. , Accad, M. , Linton, M. F. , & Farese, R. V., Jr. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. Journal of Clinical Investigation, 107(2), 163-171. https://doi.org/10.1172/JCI10310
Feng, B. , Yao, P. M. , Li, Y. , Devlin, C. M. , Zhang, D. , Harding, H. P. , Sweeney, M. , Rong, J. X. , Kuriakose, G. , Fisher, E. A. , Marks, A. R. , Ron, D. , & Tabas, I. (2003). The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biology, 5(9), 781-792. https://doi.org/10.1038/ncb1035
Feng, J. , Han, J. , Pearce, S. F. , Silverstein, R. L. , Gotto, A. M., Jr. , Hajjar, D. P. , & Nicholson, A. C. (2000). Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. Journal of Lipid Research, 41(5), 688-696.
Fu, X. , Menke, J. G. , Chen, Y. , Zhou, G. , MacNaul, K. L. , Wright, S. D. , Sparrow, C. P. , & Lund, E. G. (2001). 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. Journal of Biological Chemistry, 276(42), 38378-38387. https://doi.org/10.1074/jbc.M105805200
Gelissen, I. C. , Harris, M. , Rye, K. A. , Quinn, C. , Brown, A. J. , Kockx, M. , Cartland, S. , Packianathan, M. , Kritharides, L. , & Jessup, W. (2006). ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(3), 534-540. https://doi.org/10.1161/01.ATV.0000200082.58536.e1
Gerhardt, T. , & Ley, K. (2015). Monocyte trafficking across the vessel wall. Cardiovascular Research, 107(3), 321-330. https://doi.org/10.1093/cvr/cvv147
Ghosh, S. , Zhao, B. , Bie, J. , & Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascular Pharmacology, 52(1-2), 1-10. https://doi.org/10.1016/j.vph.2009.10.002
Graham, A. (2015). Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radical Biology and Medicine, 89, 982-992. https://doi.org/10.1016/j.freeradbiomed.2015.08.010
Graham, A. , & Allen, A. M. (2015). Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses. World Journal of Cardiology, 7(5), 277-286. https://doi.org/10.4330/wjc.v7.i5.277
Griffin, E. E. , Ullery, J. C. , Cox, B. E. , & Jerome, W. G. (2005). Aggregated LDL and lipid dispersions induce lysosomal cholesteryl ester accumulation in macrophage foam cells. Journal of Lipid Research, 46(10), 2052-2060. https://doi.org/10.1194/jlr.M500059-JLR200
Guo, S. , Lu, J. , Zhuo, Y. , Xiao, M. , Xue, X. , Zhong, S. , Shen, X. , Yin, C. , Li, L. , Chen, Q. , Zhu, M. , Chen, B. , Zhao, M. , Zheng, L. , Tao, Y. , & Yin, H. (2019). Endogenous cholesterol ester hydroperoxides modulate cholesterol levels and inhibit cholesterol uptake in hepatocytes and macrophages. Redox Biology, 21, 101069. https://doi.org/10.1016/j.redox.2018.101069
Haka, A. S. , Singh, R. K. , Grosheva, I. , Hoffner, H. , Capetillo-Zarate, E. , Chin, H. F. , Anandasabapathy, N. , & Maxfield, F. R. (2015). Monocyte-derived dendritic cells upregulate extracellular catabolism of aggregated low-density lipoprotein on maturation, leading to foam cell formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(10), 2092-2103. https://doi.org/10.1161/ATVBAHA.115.305843
Han, J. , Hajjar, D. P. , Tauras, J. M. , & Nicholson, A. C. (1999). Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. Journal of Lipid Research, 40(5), 830-838.
Han, J. , Nicholson, A. C. , Zhou, X. , Feng, J. , Gotto, A. M., Jr. , & Hajjar, D. P. (2001). Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. Journal of Biological Chemistry, 276(19), 16567-16572. https://doi.org/10.1074/jbc.M011302200
Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine, 352(16), 1685-1695. https://doi.org/10.1056/NEJMra043430
Hansson, G. K. , Robertson, A. K. , & Soderberg-Naucler, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology, 1, 297-329. https://doi.org/10.1146/annurev.pathol.1.110304.100100
Hashizume, M. , & Mihara, M. (2012). Atherogenic effects of TNF-alpha and IL-6 via up-regulation of scavenger receptors. Cytokine, 58(3), 424-430. https://doi.org/10.1016/j.cyto.2012.02.010
Heid, M. E. , Keyel, P. A. , Kamga, C. , Shiva, S. , Watkins, S. C. , & Salter, R. D. (2013). Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. Journal of Immunology, 191(10), 5230-5238. https://doi.org/10.4049/jimmunol.1301490
Huang, H. , Li, X. , Zhuang, Y. , Li, N. , Zhu, X. , Hu, J. , & Chen, Q. (2014). Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage. Journal of Biomedical Research, 28(3), 213-221. https://doi.org/10.7555/JBR.28.20130105
Huang, L. , Chambliss, K. L. , Gao, X. , Yuhanna, I. S. , Behling-Kelly, E. , Bergaya, S. , Ahmed, M. , Michaely, P. , Luby-Phelps, K. , Darehshouri, A. , Xu, L. , Fisher, E. A. , Ge, W. P. , Mineo, C. , & Shaul, P. W. (2019). SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature, 569(7757), 565-569. https://doi.org/10.1038/s41586-019-1140-4
Igarashi, M. , Osuga, J. , Uozaki, H. , Sekiya, M. , Nagashima, S. , Takahashi, M. , Takase, S. , Takanashi, M. , Li, Y. , Ohta, K. , Kumagai, M. , Nishi, M. , Hosokawa, M. , Fledelius, C. , Jacobsen, P. , Yagyu, H. , Fukayama, M. , Nagai, R. , Kadowaki, T. , … Ishibashi, S. (2010). The critical role of neutral cholesterol ester hydrolase 1 in cholesterol removal from human macrophages. Circulation Research, 107(11), 1387-1395. https://doi.org/10.1161/CIRCRESAHA.110.226613
Ito, A. , Hong, C. , Rong, X. , Zhu, X. , Tarling, E. J. , Hedde, P. N. , Gratton, E. , Parks, J. , & Tontonoz, P. (2015). LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife, 4, e08009. https://doi.org/10.7554/eLife.08009
Ivanova, E. A. , Bobryshev, Y. V. , & Orekhov, A. N. (2015). LDL electronegativity index: A potential novel index for predicting cardiovascular disease. Vascular Health and Risk Management, 11, 525-532. https://doi.org/10.2147/VHRM.S74697
Ivanova, E. A. , Myasoedova, V. A. , Melnichenko, A. A. , Grechko, A. V. , & Orekhov, A. N. (2017). Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Medicine and Cellular Longevity, 2017(25), 1-10. https://doi.org/10.1155/2017/1273042
Janoudi, A. , Shamoun, F. E. , Kalavakunta, J. K. , & Abela, G. S. (2016). Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. European Heart Journal, 37(25), 1959-1967. https://doi.org/10.1093/eurheartj/ehv653
Jerome, W. G. (2010). Lysosomes, cholesterol and atherosclerosis. Clinical Lipidology, 5(6), 853-865. https://doi.org/10.2217/clp.10.70
Jones, N. L. , & Willingham, M. C. (1999). Modified LDLs are internalized by macrophages in part via macropinocytosis. Anatomical Record, 255(1), 57-68. https://doi.org/10.1002/(SICI)1097-0185(19990501)255:1<57::AID-AR7>3.0.CO;2-Z
Karunakaran, D. , Thrush, A. B. , Nguyen, M. A. , Richards, L. , Geoffrion, M. , Singaravelu, R. , Ramphos, E. , Shangari, P. , Ouimet, M. , Pezacki, J. P. , Moore, K. J. , Perisic, L. , Maegdefessel, L. , Hedin, U. , Harper, M. E. , & Rayner, K. J. (2015). Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circulation Research, 117(3), 266-278. https://doi.org/10.1161/CIRCRESAHA.117.305624
Korytowski, W. , Wawak, K. , Pabisz, P. , Schmitt, J. C. , Chadwick, A. C. , Sahoo, D. , & Girotti, A. W. (2015). Impairment of macrophage cholesterol efflux by cholesterol hydroperoxide trafficking: Implications for atherogenesis under oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(10), 2104-2113. https://doi.org/10.1161/ATVBAHA.115.306210
Korytowski, W. , Wawak, K. , Pabisz, P. , Schmitt, J. C. , & Girotti, A. W. (2014). Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: Implications for oxidative stress-impaired reverse cholesterol transport. FEBS Letters, 588(1), 65-70. https://doi.org/10.1016/j.febslet.2013.10.051
Kotla, S. , Singh, N. K. , & Rao, G. N. (2017). ROS via BTK-p300-STAT1-PPARgamma signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biology, 11, 350-364. https://doi.org/10.1016/j.redox.2016.12.005
Kruth, H. S. (2011). Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Current Opinion in Lipidology, 22(5), 386-393. https://doi.org/10.1097/MOL.0b013e32834adadb
Kuchibhotla, S. , Vanegas, D. , Kennedy, D. J. , Guy, E. , Nimako, G. , Morton, R. E. , & Febbraio, M. (2008). Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovascular Research, 78(1), 185-196. https://doi.org/10.1093/cvr/cvm093
Kunjathoor, V. V. , Febbraio, M. , Podrez, E. A. , Moore, K. J. , Andersson, L. , Koehn, S. , Rhee, J. S. , Silverstein, R. , Hoff, H. F. , & Freeman, M. W. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. Journal of Biological Chemistry, 277(51), 49982-49988. https://doi.org/10.1074/jbc.M209649200
Levitan, I. , Volkov, S. , & Subbaiah, P. V. (2010). Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling, 13(1), 39-75. https://doi.org/10.1089/ars.2009.2733
Li, W. , Yuan, X. M. , Olsson, A. G. , & Brunk, U. T. (1998). Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(2), 177-184. https://doi.org/10.1161/01.atv.18.2.177
Li, Y. , Shen, S. , Ding, S. , & Wang, L. (2018). Toll-like receptor 2 downregulates the cholesterol efflux by activating the nuclear factor-kappaB pathway in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis. Experimental and Therapeutic Medicine, 15(1), 198-204. https://doi.org/10.3892/etm.2017.5404
Libby, P. , Ridker, P. M. , & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105(9), 1135-1143. https://doi.org/10.1161/hc0902.104353
Linton, M. F. , Tao, H. , Linton, E. F. , & Yancey, P. G. (2017). SR-BI: A multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends in Endocrinology and Metabolism, 28(6), 461-472. https://doi.org/10.1016/j.tem.2017.02.001
Liu, W. , Yin, Y. , Zhou, Z. , He, M. , & Dai, Y. (2014). OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflammation Research, 63(1), 33-43. https://doi.org/10.1007/s00011-013-0667-3
Lougheed, M. , Moore, E. D. , Scriven, D. R. , & Steinbrecher, U. P. (1999). Uptake of oxidized LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(8), 1881-1890. https://doi.org/10.1161/01.atv.19.8.1881
Manning-Tobin, J. J. , Moore, K. J. , Seimon, T. A. , Bell, S. A. , Sharuk, M. , Alvarez-Leite, J. I. , de Winther, M. P. J. , Tabas, I. , & Freeman, M. W. (2009). Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(1), 19-26. https://doi.org/10.1161/ATVBAHA.108.176644
Martin-Fuentes, P. , Civeira, F. , Recalde, D. , Garcia-Otin, A. L. , Jarauta, E. , Marzo, I. , & Cenarro, A. (2007). Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. Journal of Immunology, 179(5), 3242-3248. https://doi.org/10.4049/jimmunol.179.5.3242
Martinez, F. O. , & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Reports, 6, 13. https://doi.org/10.12703/P6-13
Ménégaut, L. , Thomas, C. , Jalil, A. , Julla, J. B. , Magnani, C. , Ceroi, A. , Basmaciyan, L. , Dumont, A. , Le Goff, W. , Mathew, M. J. , Rébé, C. , Dérangère, V. , Laubriet, A. , Crespy, V. , Pais de Barros, J. P. , Steinmetz, E. , Venteclef, N. , Saas, P. , Lagrost, L. , & Masson, D. (2020). Interplay between liver X receptor and hypoxia inducible factor 1alpha potentiates interleukin-1beta production in human macrophages. Cell Reports, 31(7), 107665. https://doi.org/10.1016/j.celrep.2020.107665
Meyer, J. M. , Graf, G. A. , & van der Westhuyzen, D. R. (2013). New developments in selective cholesteryl ester uptake. Current Opinion in Lipidology, 24(5), 386-392. https://doi.org/10.1097/MOL.0b013e3283638042
Michael, D. R. , Ashlin, T. G. , Davies, C. S. , Gallagher, H. , Stoneman, T. W. , Buckley, M. L. , & Ramji, D. P. (2013). Differential regulation of macropinocytosis in macrophages by cytokines: Implications for foam cell formation and atherosclerosis. Cytokine, 64(1), 357-361. https://doi.org/10.1016/j.cyto.2013.05.016
Miller, Y. I. , Chang, M. K. , Binder, C. J. , Shaw, P. X. , & Witztum, J. L. (2003). Oxidized low density lipoprotein and innate immune receptors. Current Opinion in Lipidology, 14(5), 437-445. https://doi.org/10.1097/00041433-200310000-00004
Miller, Y. I. , Choi, S. H. , Fang, L. , & Harkewicz, R. (2009). Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends in Cardiovascular Medicine, 19(7), 227-232. https://doi.org/10.1016/j.tcm.2010.02.001
Mills, E. L. , Kelly, B. , Logan, A. , Costa, A. S. H. , Varma, M. , Bryant, C. E. , Tourlomousis, P. , Däbritz, J. H. M. , Gottlieb, E. , Latorre, I. , Corr, S. C. , McManus, G. , Ryan, D. , Jacobs, H. T. , Szibor, M. , Xavier, R. J. , Braun, T. , Frezza, C. , Murphy, M. P. , & O'Neill, L. A. (2016). Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 167(2), 457-470 e413. https://doi.org/10.1016/j.cell.2016.08.064
Mineo, C. (2020). Lipoprotein receptor signalling in atherosclerosis. Cardiovascular Research, 116(7), 1254-1274. https://doi.org/10.1093/cvr/cvz338
Moore, K. J. , Kunjathoor, V. V. , Koehn, S. L. , Manning, J. J. , Tseng, A. A. , Silver, J. M. , McKee, M. , & Freeman, M. W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. Journal of Clinical Investigation, 115(8), 2192-2201. https://doi.org/10.1172/JCI24061
Moore, K. J. , Sheedy, F. J. , & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology, 13(10), 709-721. https://doi.org/10.1038/nri3520
Nagy, L. , Tontonoz, P. , Alvarez, J. G. , Chen, H. , & Evans, R. M. (1998). Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 93(2), 229-240. https://doi.org/10.1016/s0092-8674(00)81574-3
Nissen, S. E. , Tuzcu, E. M. , Brewer, H. B. , Sipahi, I. , Nicholls, S. J. , Ganz, P. , Schoenhagen, P. , Waters, D. D. , Pepine, C. J. , Crowe, T. D. , Davidson, M. H. , Deanfield, J. E. , Wisniewski, L. M. , Hanyok, J. J. , & Kassalow, L. M. (2006). Effect of ACAT inhibition on the progression of coronary atherosclerosis. New England Journal of Medicine, 354(12), 1253-1263. https://doi.org/10.1056/NEJMoa054699
Nomura, M. , Liu, J. , Rovira, I. I. , Gonzalez-Hurtado, E. , Lee, J. , Wolfgang, M. J. , & Finkel, T. (2016). Fatty acid oxidation in macrophage polarization. Nature Immunology, 17(3), 216-217. https://doi.org/10.1038/ni.3366
Nomura, M. , Liu, J. , Yu, Z. X. , Yamazaki, T. , Yan, Y. , Kawagishi, H. , Rovira, I. I. , Liu, C. , Wolfgang, M. J. , Mukouyama, Y. , & Finkel, T. (2019). Macrophage fatty acid oxidation inhibits atherosclerosis progression. Journal of Molecular and Cellular Cardiology, 127, 270-276. https://doi.org/10.1016/j.yjmcc.2019.01.003
O'Neill, L. A. , Golenbock, D. , & Bowie, A. G. (2013). The history of Toll-like receptors-Redefining innate immunity. Nature Reviews Immunology, 13(6), 453-460. https://doi.org/10.1038/nri3446
Ogata, M. , Hino, S. , Saito, A. , Morikawa, K. , Kondo, S. , Kanemoto, S. , Murakami, T. , Taniguchi, M. , Tanii, I. , Yoshinaga, K. , Shiosaka, S. , Hammarback, J. A. , Urano, F. , & Imaizumi, K. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and Cellular Biology, 26(24), 9220-9231. https://doi.org/10.1128/MCB.01453-06
Okazaki, H. , Igarashi, M. , Nishi, M. , Sekiya, M. , Tajima, M. , Takase, S. , Takanashi, M. , Ohta, K. , Tamura, Y. , Okazaki, S. , Yahagi, N. , Ohashi, K. , Amemiya-Kudo, M. , Nakagawa, Y. , Nagai, R. , Kadowaki, T. , Osuga, J. , & Ishibashi, S. (2008). Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. Journal of Biological Chemistry, 283(48), 33357-33364. https://doi.org/10.1074/jbc.M802686200
Onat, U. I. , Yildirim, A. D. , Tufanli, Ö. , Çimen, I. , Kocatürk, B. , Veli, Z. , Hamid, S. M. , Shimada, K. , Chen, S. , Sin, J. , Shah, P. K. , Gottlieb, R. A. , Arditi, M. , & Erbay, E. (2019). Intercepting the lipid-induced integrated stress response reduces atherosclerosis. Journal of the American College of Cardiology, 73(10), 1149-1169. https://doi.org/10.1016/j.jacc.2018.12.055
Orekhov, A. N. , Sukhorukov, V. N. , Nikiforov, N. G. , Kubekina, M. V. , Sobenin, I. A. , Foxx, K. K. , Pintus, S. , Stegmaier, P. , Stelmashenko, D. , Kel, A. , Poznyak, A. V. , Wu, W. K. , Kasianov, A. S. , Makeev, V. Y. , Manabe, I. , & Oishi, Y. (2020). Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response-What is first? International Journal of Molecular Sciences, 21(8), 2716. https://doi.org/10.3390/ijms21082716
Ouimet, M. , Barrett, T. J. , & Fisher, E. A. (2019). HDL and reverse cholesterol transport. Circulation Research, 124(10), 1505-1518. https://doi.org/10.1161/CIRCRESAHA.119.312617
Ouimet, M. , Franklin, V. , Mak, E. , Liao, X. , Tabas, I. , & Marcel, Y. L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metabolism, 13(6), 655-667. https://doi.org/10.1016/j.cmet.2011.03.023
Park, Y. M. (2014). CD36, a scavenger receptor implicated in atherosclerosis. Experimental & Molecular Medicine, 46, e99. https://doi.org/10.1038/emm.2014.38
Park, Y. M. , Febbraio, M. , & Silverstein, R. L. (2009). CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. Journal of Clinical Investigation, 119(1), 136-145. https://doi.org/10.1172/JCI35535
Patel, K. M. , Strong, A. , Tohyama, J. , Jin, X. , Morales, C. R. , Billheimer, J. , Millar, J. , Kruth, H. , & Rader, D. J. (2015). Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circulation Research, 116(5), 789-796. https://doi.org/10.1161/CIRCRESAHA.116.305811
Pelegrin, P. , & Surprenant, A. (2009). Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO Journal, 28(14), 2114-2127. https://doi.org/10.1038/emboj.2009.163
Phillips, M. C. (2014). Molecular mechanisms of cellular cholesterol efflux. Journal of Biological Chemistry, 289(35), 24020-24029. https://doi.org/10.1074/jbc.R114.583658
Rahaman, S. O. , Lennon, D. J. , Febbraio, M. , Podrez, E. A. , Hazen, S. L. , & Silverstein, R. L. (2006). A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metabolism, 4(3), 211-221. https://doi.org/10.1016/j.cmet.2006.06.007
Rahaman, S. O. , Swat, W. , Febbraio, M. , & Silverstein, R. L. (2011). Vav family Rho guanine nucleotide exchange factors regulate CD36-mediated macrophage foam cell formation. Journal of Biological Chemistry, 286(9), 7010-7017. https://doi.org/10.1074/jbc.M110.192450
Randolph, G. J. (2014). Mechanisms that regulate macrophage burden in atherosclerosis. Circulation Research, 114(11), 1757-1771. https://doi.org/10.1161/CIRCRESAHA.114.301174
Rinninger, F. , & Greten, H. (1990). High-density lipoprotein particle uptake and selective uptake of high-density lipoprotein-associated cholesteryl esters by J774 macrophages. Biochimica et Biophysica Acta/General Subjects, 1043(3), 318-326. https://doi.org/10.1016/0005-2760(90)90033-t
Robbins, C. S. , Hilgendorf, I. , Weber, G. F. , Theurl, I. , Iwamoto, Y. , Figueiredo, J. L. , Gorbatov, R. , Sukhova, G. K. , Gerhardt, L. M. S. , Smyth, D. , Zavitz, C. C. J. , Shikatani, E. A. , Parsons, M. , van Rooijen, N. , Lin, H. Y. , Husain, M. , Libby, P. , Nahrendorf, M. , Weissleder, R. , & Swirski, F. K. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 19(9), 1166-1172. https://doi.org/10.1038/nm.3258
Rosenson, R. S. , Brewer, H. B., Jr. , Davidson, W. S. , Fayad, Z. A. , Fuster, V. , Goldstein, J. , Hellerstein, M. , Jiang, X. C. , Phillips, M. C. , Rader, D. J. , Remaley, A. T. , Rothblat, G. H. , Tall, A. R. , & Yvan-Charvet, L. (2012). Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation, 125(15)), 1905-1919. https://doi.org/10.1161/CIRCULATIONAHA.111.066589
Rudel, L. L. , Lee, R. G. , & Cockman, T. L. (2001). Acyl coenzyme A: Cholesterol acyltransferase types 1 and 2: Structure and function in atherosclerosis. Current Opinion in Lipidology, 12(2), 121-127. https://doi.org/10.1097/00041433-200104000-00005
Seimon, T. A. , Nadolski, M. J. , Liao, X. , Magallon, J. , Nguyen, M. , Feric, N. T. , Koschinsky, M. L. , Harkewicz, R. , Witztum, J. L. , Tsimikas, S. , Golenbock, D. , Moore, K. J. , & Tabas, I. (2010). Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabolism, 12(5), 467-482. https://doi.org/10.1016/j.cmet.2010.09.010
Sekiya, M. , Osuga, J. , Nagashima, S. , Ohshiro, T. , Igarashi, M. , Okazaki, H. , Takahashi, M. , Tazoe, F. , Wada, T. , Ohta, K. , Takanashi, M. , Kumagai, M. , Nishi, M. , Takase, S. , Yahagi, N. , Yagyu, H. , Ohashi, K. , Nagai, R. , Kadowaki, T. , … Ishibashi, S. (2009). Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metabolism, 10(3), 219-228. https://doi.org/10.1016/j.cmet.2009.08.004
Sekiya, M. , Yamamuro, D. , Ohshiro, T. , Honda, A. , Takahashi, M. , Kumagai, M. , Sakai, K. , Nagashima, S. , Tomoda, H. , Igarashi, M. , Okazaki, H. , Yagyu, H. , Osuga, J. , & Ishibashi, S. (2014). Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages. Journal of Lipid Research, 55(10), 2082-2092. https://doi.org/10.1194/jlr.M050864
Sergin, I. , Evans, T. D. , Zhang, X. , Bhattacharya, S. , Stokes, C. J. , Song, E. , Ali, S. , Dehestani, B. , Holloway, K. B. , Micevych, P. S. , Javaheri, A. , Crowley, J. R. , Ballabio, A. , Schilling, J. D. , Epelman, S. , Weihl, C. C. , Diwan, A. , Fan, D. , Zayed, M. A. , & Razani, B. (2017). Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications, 8, 15750. https://doi.org/10.1038/ncomms15750
Settembre, C. , Fraldi, A. , Medina, D. L. , & Ballabio, A. (2013). Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nature Reviews Molecular Cell Biology, 14(5), 283-296. https://doi.org/10.1038/nrm3565
Shashkin, P. , Dragulev, B. , & Ley, K. (2005). Macrophage differentiation to foam cells. Current Pharmaceutical Design, 11(23), 3061-3072. https://doi.org/10.2174/1381612054865064
Sheedy, F. J. , Grebe, A. , Rayner, K. J. , Kalantari, P. , Ramkhelawon, B. , Carpenter, S. B. , Becker, C. E. , Ediriweera, H. N. , Mullick, A. E. , Golenbock, D. T. , Stuart, L. M. , Latz, E. , Fitzgerald, K. A. , & Moore, K. J. (2013). CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 14(8), 812-820. https://doi.org/10.1038/ni.2639
Shen, W. J. , Azhar, S. , & Kraemer, F. B. (2018). SR-B1: A unique multifunctional receptor for cholesterol influx and efflux. Annual Review of Physiology, 80, 95-116. https://doi.org/10.1146/annurev-physiol-021317-121550
Singh, R. K. , Haka, A. S. , Asmal, A. , Barbosa-Lorenzi, V. C. , Grosheva, I. , Chin, H. F. , Xiong, Y. , Hla, T. , & Maxfield, F. R. (2020). TLR4 (toll-like receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) aggregates. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(1), 86-102. https://doi.org/10.1161/ATVBAHA.119.313200
Singh, S. , & Gautam, A. S. (2019). Upregulated LOX-1 receptor: Key player of the pathogenesis of atherosclerosis. Current Atherosclerosis Reports, 21(10), 38. https://doi.org/10.1007/s11883-019-0801-y
Song, J. , Wang, D. , Chen, H. , Huang, X. , Zhong, Y. , Jiang, N. , Chen, C. , & Xia, M. (2017). Association of plasma 7-ketocholesterol with cardiovascular outcomes and total mortality in patients with coronary artery disease. Circulation Research, 120(10), 1622-1631. https://doi.org/10.1161/CIRCRESAHA.117.311049
Sorci-Thomas, M. G. , & Thomas, M. J. (2016). Microdomains, inflammation, and atherosclerosis. Circulation Research, 118(4), 679-691. https://doi.org/10.1161/CIRCRESAHA.115.306246
Steinberg, D. (2009). The LDL modification hypothesis of atherogenesis: An update. Journal of Lipid Research, 50(Suppl.), S376-S381. https://doi.org/10.1194/jlr.R800087-JLR200
Steinberg, D. , & Witztum, J. L. (2010). Oxidized low-density lipoprotein and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2311-2316. https://doi.org/10.1161/ATVBAHA.108.179697
Stewart, C. R. , Stuart, L. M. , Wilkinson, K. , van Gils, J. M. , Deng, J. , Halle, A. , Rayner, K. J. , Boyer, L. , Zhong, R. , Frazier, W. A. , Lacy-Hulbert, A. , Khoury, J. E. , Golenbock, D. T. , & Moore, K. J. (2010). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology, 11(2), 155-161. https://doi.org/10.1038/ni.1836
Su, Y. R. , Dove, D. E. , Major, A. S. , Hasty, A. H. , Boone, B. , Linton, M. F. , & Fazio, S. (2005). Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein E-deficient mice lacking macrophage-derived ACAT1. Circulation, 111(18), 2373-2381. https://doi.org/10.1161/01.CIR.0000164236.19860.13
Sukhorukov, V. N. , Khotina, V. A. , Chegodaev, Y. S. , Ivanova, E. , Sobenin, I. A. , & Orekhov, A. N. (2020). Lipid metabolism in macrophages: Focus on atherosclerosis. Biomedicines, 8(8), 262. https://doi.org/10.3390/biomedicines8080262
Sun, Y. , Ishibashi, M. , Seimon, T. , Lee, M. , Sharma, S. M. , Fitzgerald, K. A. , Samokhin, A. O. , Wang, Y. , Sayers, S. , Aikawa, M. , Jerome, W. G. , Ostrowski, M. C. , Bromme, D. , Libby, P. , Tabas, I. A. , Welch, C. L. , & Tall, A. R. (2009). Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circulation Research, 104(4), 455-465. https://doi.org/10.1161/CIRCRESAHA.108.182568
Sun, Y. , Zhang, D. , Liu, X. , Li, X. , Liu, F. , Yu, Y. , Jia, S. , Zhou, Y. , & Zhao, Y. (2018). Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cellular Physiology and Biochemistry, 48(5), 1995-2010. https://doi.org/10.1159/000492522
Swirski, F. K. , Libby, P. , Aikawa, E. , Alcaide, P. , Luscinskas, F. W. , Weissleder, R. , & Pittet, M. J. (2007). Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. Journal of Clinical Investigation, 117(1), 195-205. https://doi.org/10.1172/JCI29950
Tabas, I. , & Bornfeldt, K. E. (2016). Macrophage phenotype and function in different stages of atherosclerosis. Circulation Research, 118(4), 653-667. https://doi.org/10.1161/CIRCRESAHA.115.306256
Tabas, I. , Williams, K. J. , & Boren, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation, 116(16), 1832-1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890
Takeda, K. , & Akira, S. (2005). Toll-like receptors in innate immunity. International Immunology, 17(1), 1-14. https://doi.org/10.1093/intimm/dxh186
Tall, A. R. (2008). Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. Journal of Internal Medicine, 263(3), 256-273. https://doi.org/10.1111/j.1365-2796.2007.01898.x
Tall, A. R. , & Yvan-Charvet, L. (2015). Cholesterol, inflammation and innate immunity. Nature Reviews Immunology, 15(2), 104-116. https://doi.org/10.1038/nri3793
Terasaka, N. , Wang, N. , Yvan-Charvet, L. , & Tall, A. R. (2007). High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 15093-15098. https://doi.org/10.1073/pnas.0704602104
Tontonoz, P. , Nagy, L. , Alvarez, J. G. , Thomazy, V. A. , & Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93(2), 241-252. https://doi.org/10.1016/s0092-8674(00)81575-5
Torocsik, D. , Szanto, A. , & Nagy, L. (2009). Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Molecular Aspects of Medicine, 30(3), 134-152. https://doi.org/10.1016/j.mam.2009.02.002
Treuter, E. (2011). New wrestling rules of anti-inflammatory transrepression by oxysterol receptor LXR revealed. Cell Research, 21(5), 711-714. https://doi.org/10.1038/cr.2011.52
Vakkilainen, J. , Mäkimattila, S. , Seppälä-Lindroos, A. , Vehkavaara, S. , Lahdenperä, S. , Groop, P. H. , Taskinen, M. R. , & Yki-Järvinen, H. (2000). Endothelial dysfunction in men with small LDL particles. Circulation, 102(7), 716-721. https://doi.org/10.1161/01.cir.102.7.716
Viaud, M. , Ivanov, S. , Vujic, N. , Duta-Mare, M. , Aira, L. E. , Barouillet, T. , Garcia, E. , Orange, F. , Dugail, I. , Hainault, I. , Stehlik, C. , Marchetti, S. , Boyer, L. , Guinamard, R. , Foufelle, F. , Bochem, A. , Hovingh, K. G. , Thorp, E. B. , Gautier, E. L. , … Yvan-Charvet, L. (2018). Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circulation Research, 122(10), 1369-1384. https://doi.org/10.1161/CIRCRESAHA.117.312333
Viola, A. , Munari, F. , Sanchez-Rodriguez, R. , Scolaro, T. , & Castegna, A. (2019). The metabolic signature of macrophage responses. Frontiers in Immunology, 10, 1462. https://doi.org/10.3389/fimmu.2019.01462
Wakabayashi, T. , Takahashi, M. , Yamamuro, D. , Karasawa, T. , Takei, A. , Takei, S. , Yamazaki, H. , Nagashima, S. , Ebihara, K. , Takahashi, M. , & Ishibashi, S. (2018). Inflammasome activation aggravates cutaneous xanthomatosis and atherosclerosis in ACAT1 (acyl-CoA cholesterol acyltransferase 1) deficiency in bone marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(11), 2576-2589. https://doi.org/10.1161/ATVBAHA.118.311648
Wang, M. D. , Kiss, R. S. , Franklin, V. , McBride, H. M. , Whitman, S. C. , & Marcel, Y. L. (2007). Different cellular traffic of LDL-cholesterol and acetylated LDL-cholesterol leads to distinct reverse cholesterol transport pathways. Journal of Lipid Research, 48(3), 633-645. https://doi.org/10.1194/jlr.M600470-JLR200
Weissberg, P. L. , & Bennett, M. R. (1999). Atherosclerosis-An inflammatory disease. New England Journal of Medicine, 340(24), 1928-1929.
Westerterp, M. , Bochem, A. E. , Yvan-Charvet, L. , Murphy, A. J. , Wang, N. , & Tall, A. R. (2014). ATP-binding cassette transporters, atherosclerosis, and inflammation. Circulation Research, 114(1), 157-170. https://doi.org/10.1161/CIRCRESAHA.114.300738
White, C. R. , Datta, G. , & Giordano, S. (2017). High-density lipoprotein regulation of mitochondrial function. Advances in Experimental Medicine and Biology, 982, 407-429. https://doi.org/10.1007/978-3-319-55330-6_22
Wong, H. S. , Jaumouillé, V. , Freeman, S. A. , Doodnauth, S. A. , Schlam, D. , Canton, J. , Mukovozov, I. M. , Saric, A. , Grinstein, S. , & Robinson, L. A. (2016). Chemokine signaling enhances CD36 responsiveness toward oxidized low-density lipoproteins and accelerates foam cell formation. Cell Reports, 14(12), 2859-2871. https://doi.org/10.1016/j.celrep.2016.02.071
Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , Das, S. R. , de Ferranti, S. , Després, J. P. , Fullerton, H. J. , Howard, V. J. , Huffman, M. D. , Isasi, C. R. , Jiménez, M. C. , Judd, S. E. , Kissela, B. M. , Lichtman, J. H. , Lisabeth, L. D. , Liu, S. , … Turner, M. B. (2016). Heart disease and stroke statistics-2016 update: A report from the american heart association. Circulation, 133(4), e38-e360. https://doi.org/10.1161/CIR.0000000000000350
Yang, L. , Yang, J. B. , Chen, J. , Yu, G. Y. , Zhou, P. , Lei, L. , Wang, Z. Z. , Chang, C. C. , Yang, X. Y. , Chang, T. Y. , & Li, B. L. (2004). Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Research, 14(4), 315-323. https://doi.org/10.1038/sj.cr.7290231
Yao, P. M. , & Tabas, I. (2001). Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. Journal of Biological Chemistry, 276(45), 42468-42476. https://doi.org/10.1074/jbc.M101419200
Yao, S. , Miao, C. , Tian, H. , Sang, H. , Yang, N. , Jiao, P. , Han, J. , Zong, C. , & Qin, S. (2014). Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. Journal of Biological Chemistry, 289(7), 4032-4042. https://doi.org/10.1074/jbc.M113.524512
Yeagle, P. L. (1991). Modulation of membrane function by cholesterol. Biochimie, 73(10), 1303-1310. https://doi.org/10.1016/0300-9084(91)90093-g
Yeaman, S. J. (2004). Hormone-sensitive lipase-New roles for an old enzyme. Biochemical Journal, 379(Pt 1), 11-22. https://doi.org/10.1042/BJ20031811
Yu, X. H. , Fu, Y. C. , Zhang, D. W. , Yin, K. , & Tang, C. K. (2013). Foam cells in atherosclerosis. Clinica Chimica Acta, 424, 245-252. https://doi.org/10.1016/j.cca.2013.06.006
Yuan, X. M. , Li, W. , Brunk, U. T. , Dalen, H. , Chang, Y. H. , & Sevanian, A. (2000). Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radical Biology and Medicine, 28(2), 208-218. https://doi.org/10.1016/s0891-5849(99)00220-8
Yvan-Charvet, L. , Wang, N. , & Tall, A. R. (2010). Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(2), 139-143. https://doi.org/10.1161/ATVBAHA.108.179283
Yvan-Charvet, L. , Welch, C. , Pagler, T. A. , Ranalletta, M. , Lamkanfi, M. , Han, S. , Ishibashi, M. , Li, R. , Wang, N. , & Tall, A. R. (2008). Increased inflammatory gene expression in ABC transporter-deficient macrophages: Free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation, 118(18), 1837-1847. https://doi.org/10.1161/CIRCULATIONAHA.108.793869
Zhang, H. (2018). Lysosomal acid lipase and lipid metabolism: New mechanisms, new questions, and new therapies. Current Opinion in Lipidology, 29(3), 218-223. https://doi.org/10.1097/MOL.0000000000000507
Zhao, B. , Huang, W. , Zhang, W. Y. , Ishii, I. , & Kruth, H. S. (2004). Retention of aggregated LDL by cultured human coronary artery endothelial cells. Biochemical and Biophysical Research Communications, 321(3), 728-735. https://doi.org/10.1016/j.bbrc.2004.07.017
Zhao, G. J. , Yin, K. , Fu, Y. C. , & Tang, C. K. (2012). The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Molecular Medicine, 18, 149-158. https://doi.org/10.2119/molmed.2011.00183
Zhao, M. , Liu, Y. , Wang, X. , New, L. , Han, J. , & Brunk, U. T. (2002). Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS, 110(6), 458-468. https://doi.org/10.1034/j.1600-0463.2002.100604.x
Zhu, X. , Owen, J. S. , Wilson, M. D. , Li, H. , Griffiths, G. L. , Thomas, M. J. , Hiltbold, E. M. , Fessler, M. B. , & Parks, J. S. (2010). Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. Journal of Lipid Research, 51(11), 3196-3206. https://doi.org/10.1194/jlr.M006486