Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity.


Journal

Journal of biochemical and molecular toxicology
ISSN: 1099-0461
Titre abrégé: J Biochem Mol Toxicol
Pays: United States
ID NLM: 9717231

Informations de publication

Date de publication:
May 2021
Historique:
revised: 06 11 2020
received: 17 07 2020
accepted: 20 01 2021
pubmed: 2 2 2021
medline: 29 7 2021
entrez: 1 2 2021
Statut: ppublish

Résumé

The neurotoxic level of ammonia in the brain during liver cirrhosis causes a nervous system disorder, hepatic encephalopathy (HE), by affecting mitochondrial functions. Sirtuin-3 (SIRT3) is emerging as a master regulator of mitochondrial integrity, which is currently being focused as a pathogenic hotspot for HE. This article describes SIRT3 level versus mitochondrial dysfunction markers in the hippocampus of the control, the moderate-grade hepatic encephalopathy (MoHE), developed in thioacetamide-induced (100 mg/kg bw ip for 10 days) liver cirrhotic rats, and the MoHE rats treated with an SIRT3 activator, honokiol (HKL; 10 mg/kg bw ip), for 7 days from 8th day of the thioacetamide schedule. As compared with the control group rats, hippocampus mitochondria of MoHE rats showed a significant decline in SIRT3 expression and its activity with concordant enhancement of ROS and declined membrane permeability transition and organelle viability scores. This was consistent with the declined mitochondrial thiol level and thiol-regenerating enzyme, isocitrate dehydrogenase 2. Also, significantly declined activities of electron transport chain complexes I, III, IV, and Q

Identifiants

pubmed: 33522075
doi: 10.1002/jbt.22735
doi:

Substances chimiques

SIRT3 protein, rat 0
Ammonia 7664-41-7
Sirtuins EC 3.5.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e22735

Subventions

Organisme : DST-SERB Govt India
ID : EMR/2016/006501

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

V. Felipo, Handbook of Neurochemistry and Molecular Neurobiology, Springer, Boston, MA 2009, p. 43. https://doi.org/10.1007/978-0-387-30375-8_3
R. Heidari, Life Sci. 2019, 218, 65. https://doi.org/10.1016/j.lfs.2018.12.030
S. Singh, S. K. Trigun, Neurosci. Lett. 2014, 559, 136. https://doi.org/10.1016/j.neulet.2013.11.058
P. Ferenci, Gastroenterol. Rep. (Oxf) 2017, 5(2), 138. https://doi.org/10.1093/gastro/gox013
R. F. Butterworth, Drugs 2019, 79(1), 17. https://doi.org/10.1007/s40265-018-1017-0
A. Mehta, M. Prabhakar, P. Kumar, R. Deshmukh, P. L. Sharma, Eur. J. Pharmacol. 2013, 698(1-3), 6. https://doi.org/10.1016/j.ejphar.2012.10.032
Y. Wu, M. Chen, J. Jiang, Mitochondrion 2019, 49, 35. https://doi.org/10.1016/j.mito.2019.07.003
H. Jęśko, P. Wencel, R. P. Strosznajder, J. B. Strosznajder, Neurochem. Res. 2017, 42(3), 876. https://doi.org/10.1007/s11064-016-2110-y
A. Ansari, M. S. Rahman, S. K. Saha, F. K. Saikot, A. Deep, K. H. Kim, Aging Cell 2017, 16(1), 4. https://doi.org/10.1111/acel.12538
A. Khanna, Anamika, P. Acharjee, A. Acharjee, S. K. Trigun, J. Chem. Neuroanat. 2019, 95, 43. https://doi.org/10.1016/j.jchemneu.2017.11.009
B. Kincaid, E. Bossy-Wetzel, Front. Aging Neurosci. 2013, 5, 48. https://doi.org/10.3389/fnagi.2013.00048
E. McDonnell, B. S. Peterson, H. M. Bomze, M. D. Hirschey, Trends Endocrinol. Metab. 2015, 26(9), 486. https://doi.org/10.1016/j.tem.2015.06.001
J. Yin, S. Li, M. Nielsen, T. Carcione, W. S. Liang, J. Shi, Aging (Albany NY) 2018, 10(10), 2874. https://doi.org/10.18632/aging.101592
J. Y. Zhang, Y. N. Deng, M. Zhang, H. Su, Q. M. Qu, Neurochem. Res. 2016, 41(7), 1761. https://doi.org/10.1007/s11064-016-1892-2
S. H. Dai, T. Chen, Y. H. Wang, J. Zhu, P. Luo, W. Rao, Y. F. Yang, Z. Fei, X. F. Jiang, Int. J. Mol. Sci. 2014, 15(8), 14591. https://doi.org/10.3390/ijms150814591
S. Singh, S. K. Trigun, Cerebellum 2010, 9(3), 384. https://doi.org/10.1007/s12311-010-0172-y
A. Khanna, Anamika, S. Chakraborty, S. J. Tripathi, A. Acharjee, S. Rao BS, S. K. Trigun, J. Chem. Neuroanat. 2020, 106, 101797. https://doi.org/10.1016/j.jchemneu.2020.101797
X. Wang, X. Duan, G. Yang, X. Zhang, L. Deng, H. Zheng, C. Deng, J. Wen, N. Wang, C. Peng, X. Zhao, PLOS One 2011, 6(4), e18490. https://doi.org/10.1371/journal.pone.0018490
A. Woodbury, S. P. Yu, L. Wei, P. García, Front. Neurol. 2013, 4, 130. https://doi.org/10.3389/fneur.2013.00130
S. Ramesh, M. Govindarajulu, T. Lynd, G. Briggs, D. Adamek, E. Jones, J. Heiner, M. Majrashi, T. Moore, R. Amin, V. Suppiramaniam, PLOS One 2018, 13(1), e0190350. https://doi.org/10.1371/journal.pone.0190350
K. V. Sathyasaikumar, I. Swapna, P. V. B. Reddy, C. R. Murthy, A. D. Gupta, B. Senthilkumaran, P. Reddanna, Neurochem. Res. 2007, 32(3), 517. https://doi.org/10.1007/s11064-006-9265-x
V. Gogvadze, J. D. Robertson, B. Zhivotovsky, S. Orrenius, J. Biol. Chem. 2001, 276(22), 19066. https://doi.org/10.1074/jbc.M100614200
P. Mondal, S. K. Trigun, J. Evidence-Based Complementary Altern. Med. 2015, 2015, 1. https://doi.org/10.1155/2015/535013
A. Khanna, S. K. Trigun, Int. J. Complementary Altern. Med. 2016, 4(2), 00115. https://doi.org/10.15406/ijcam.2016.04.00115
W. Peerapanyasut, A. Kobroob, S. Palee, N. Chattipakorn, O. Wongmekiat, Int. J. Mol. Sci. 2019, 20(2), 267. https://doi.org/10.3390/ijms20020267
A. Mehrotra, S. K. Trigun, Neurochem. Res. 2012, 37(1), 171. https://doi.org/10.1007/s11064-011-0596-x
S. Someya, W. Yu, W. C. Hallows, J. Xu, J. M. Vann, C. Leeuwenburgh, M. Tanokura, J. M. Denu, T. A. Prolla, Cell 2011, 143(5), 802. https://doi.org/10.1016/j.cell.2010.10.002
M. Spinazzi, A. Casarin, V. Pertegato, L. Salviati, C. Angelini, Nat. Protoc. 2012, 7(6), 1235. https://doi.org/10.1038/nprot.2012.058
J. Yoshino, S. I. Imai, Sirtuins, Humana Press, Totowa, NJ 2013, pp. 203. https://doi.org/10.1007/978-1-62703-637-5_14
K. Kurahasi, J. Tokunaga, T. Fujit, M. Miyahara, Archivumhistologicumjaponicum 1969, 30(2), 217. https://doi.org/10.1679/aohc1950.30.217
J. S. Bajaj, J. B. Wade, A. J. Sanyal, Hepatology 2009, 50(6), 2014. https://doi.org/10.1002/hep.23216
J. S. Ye, L. Chen, Y. Y. Lu, S. Q. Lei, M. Peng, Z. Y. Xia, CNS Neurosci. Ther. 2019, 25(3), 355. https://doi.org/10.1111/cns.13053
A. Collier, C. Pritsos, Biochem. Pharmacol. 2003, 366, 281. https://doi.org/10.1016/S0006-2952(03)00240-5
P. R. Angelova, A. Y. Abramov, FEBS Lett. 2018, 592(5), 692. https://doi.org/10.1002/1873-3468.12964
S. Dhanda, A. Sunkaria, A. Halder, R. Sandhir, Metab. Brain Dis. 2018, 33(1), 209. https://doi.org/10.1007/s11011-017-0136-8
T. Shi, F. Wang, E. Stieren, Q. Tong, J. Biol. Chem. 2005, 280(14), 13560. https://doi.org/10.1074/jbc.M414670200
Y. Yang, W. Wang, Z. Xiong, J. Kong, Y. Qiu, F. Shen, Z. Huang, Toxicol. In Vitro 2016, 34, 128. https://doi.org/10.1016/j.tiv.2016.03.020
L. M. Booty, J. M. Gawel, F. Cvetko, S. T. Caldwell, A. R. Hall, J. F. Mulvey, C. Beninca, Cell Chem. Biol. 2019, 26(3), 449. https://doi.org/10.1016/j.chembiol.2018.12.002
B. K. Singh, M. Tripathi, P. K. Pandey, P. Kakkar, Mol. Cell. Biochem. 2011, 357(1-2), 373. https://doi.org/10.1007/s11010-011-0908-0
S. Singh, R. K. Koiri, S. K. Trigun, Neurochem. Res. 2008, 33, 103. https://doi.org/10.1007/s11064-007-9422-x
S. J. Han, H. S. Jang, M. R. Noh, J. Kim, M. J. Kong, J. I. Kim, K. M. Park, J. Am. Soc. Nephrol. 2017, 28(4), 1200. https://doi.org/10.1681/ASN.2016030349
H. Kim, S. H. Kim, H. Cha, S. R. Kim, J. H. Lee, J. W. Park, Free Radical Res. 2016, 50(8), 853. https://doi.org/10.1080/10715762.2016.1185519
X. Zou, Y. Zhu, S. H. Park, G. Liu, J. O'Brien, H. Jiang, D. Gius, Cancer Res. 2017, 77(15), 3990. https://doi.org/10.1158/0008-5472.CAN-16-2393
M. T. Lin, M. F. Beal, Nature 2006, 443(7113), 787. https://doi.org/10.1038/nature05292
L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A. Tempestini, R. Brancato, J. Biol. Chem. 2003, 278(30), 28220. https://doi.org/10.1074/jbc.M302297200
B. H. Ahn, H. S. Kim, S. Song, I. H. Lee, J. Liu, A. Vassilopoulos, C. X. Deng, T. Finkel, Proc. Natl. Acad. Sci. U. S. A. 2008, 105(38), 14447. https://doi.org/10.1073/pnas.0803790105
M. C. Haigis, C. X. Deng, L. W. Finley, H. S. Kim, D. Gius, Cancer Res. 2012, 72(10), 2468. https://doi.org/10.1158/0008-5472.CAN-11-3633
A. Tyagi, C. U. Nguyen, T. Chong, C. R. Michel, K. S. Fritz, N. Reisdorph, L. Knaub, J. E. Reusch, S. Pugazhenthi, Sci. Rep. 2018, 8(1), 1. https://doi.org/10.1038/s41598-018-35890-7
S. M. Kilbride, S. A. Gluchowska, J. E. Telford, C. O'Sullivan, G. P. Davey, Mol. Neurodegener. 2011, 6(1), 53. https://doi.org/10.1186/1750-1326-6-53
M. Marella, B. B. Seo, T. Yagi, A. Matsuno-Yagi, J. Bioenerg. Biomembr. 2009, 41(6), 493. https://doi.org/10.1007/s10863-009-9249-z
A. H. V. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark, C. D. Marsden, Lancet 1989, 333(8649), 1269. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x
L. Yang, J. C. G. Canaveras, Z. Chen, L. Wang, L. Liang, C. Jang, S. Joshi, Cell Metab. 2020, 31, 809. https://doi.org/10.1016/j.cmet.2020.02.017
P. H. Willems, R. Rossignol, C. E. Dieteren, M. P. Murphy, W. J. Koopman, Cell Metab. 2015, 22(2), 207. https://doi.org/10.1016/j.cmet.2015.06.006
X. Wang, B. O. Su, S. L. Siedlak, P. I. Moreira, H. Fujioka, Y. Wang, X. Zhu, Proc. Natl. Acad. Sci. U. S. A. 2008, 105(49), 19318. https://doi.org/10.1073/pnas.0804871105
S. J. Baloyannis, V. Costa, D. Michmizos, J. Neurol. Sci. 2004, 283, 89.
X. Wang, B. Su, L. Zheng, G. Perry, M. A. Smith, X. Zhu, J. Neurochem. 2009, 109, 153.

Auteurs

Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.

Surendra K Trigun (SK)

Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH