Genome Size Reduction and Transposon Activity Impact tRNA Gene Diversity While Ensuring Translational Stability in Birds.
codon usage
comparative genomics
tRNA annotation
tRNA gene usage
transposons
vertebrate
Journal
Genome biology and evolution
ISSN: 1759-6653
Titre abrégé: Genome Biol Evol
Pays: England
ID NLM: 101509707
Informations de publication
Date de publication:
05 04 2021
05 04 2021
Historique:
accepted:
22
01
2021
pubmed:
4
2
2021
medline:
27
1
2022
entrez:
3
2
2021
Statut:
ppublish
Résumé
As a highly diverse vertebrate class, bird species have adapted to various ecological systems. How this phenotypic diversity can be explained genetically is intensively debated and is likely grounded in differences in the genome content. Larger and more complex genomes could allow for greater genetic regulation that results in more phenotypic variety. Surprisingly, avian genomes are much smaller compared to other vertebrates but contain as many protein-coding genes as other vertebrates. This supports the notion that the phenotypic diversity is largely determined by selection on non-coding gene sequences. Transfer RNAs (tRNAs) represent a group of non-coding genes. However, the characteristics of tRNA genes across bird genomes have remained largely unexplored. Here, we exhaustively investigated the evolution and functional consequences of these crucial translational regulators within bird species and across vertebrates. Our dense sampling of 55 avian genomes representing each bird order revealed an average of 169 tRNA genes with at least 31% being actively used. Unlike other vertebrates, avian tRNA genes are reduced in number and complexity but are still in line with vertebrate wobble pairing strategies and mutation-driven codon usage. Our detailed phylogenetic analyses further uncovered that new tRNA genes can emerge through multiplication by transposable elements. Together, this study provides the first comprehensive avian and cross-vertebrate tRNA gene analyses and demonstrates that tRNA gene evolution is flexible albeit constrained within functional boundaries of general mechanisms in protein translation.
Identifiants
pubmed: 33533905
pii: 6127176
doi: 10.1093/gbe/evab016
pmc: PMC8044555
pii:
doi:
Substances chimiques
RNA, Transfer
9014-25-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Références
Ann N Y Acad Sci. 2017 Feb;1389(1):164-185
pubmed: 27997700
RNA. 2002 Oct;8(10):1189-232
pubmed: 12403461
Nat Rev Genet. 2015 Feb;16(2):98-112
pubmed: 25534324
Proc Biol Sci. 2018 May 16;285(1878):
pubmed: 29720411
Genome Res. 2004 Nov;14(11):2279-86
pubmed: 15479947
Nat Struct Mol Biol. 2010 May;17(5):635-40
pubmed: 20418883
Elife. 2017 Aug 15;6:
pubmed: 28826480
FEBS Lett. 2010 Jan 21;584(2):252-64
pubmed: 19931533
Mol Ecol. 2018 Jan;27(1):99-111
pubmed: 29171119
Genome Res. 2012 Apr;22(4):666-80
pubmed: 22287103
Trends Ecol Evol. 2010 May;25(5):283-91
pubmed: 20363047
Mol Biol Evol. 1985 Jan;2(1):13-34
pubmed: 3916708
Genome Res. 2020 Apr;30(4):553-565
pubmed: 32269134
Cell. 2012 Mar 30;149(1):202-13
pubmed: 22464330
Annu Rev Genet. 2008;42:287-99
pubmed: 18983258
J Mol Evol. 2001 Oct-Nov;53(4-5):290-8
pubmed: 11675589
Nucleic Acids Res. 2006;34(21):6137-46
pubmed: 17088292
Nature. 2010 Apr 1;464(7289):757-62
pubmed: 20360741
Nat Protoc. 2012 Sep;7(9):1728-40
pubmed: 22936215
Nat Commun. 2016 Apr 21;7:11396
pubmed: 27097561
Mob DNA. 2017 Dec 14;8:21
pubmed: 29255493
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
BMC Genomics. 2009 Apr 24;10:188
pubmed: 19393063
Nat Genet. 2013 Apr;45(4):415-21, 421e1-2
pubmed: 23435085
Pac Symp Biocomput. 2002;:115-26
pubmed: 11928468
G3 (Bethesda). 2017 Jan 5;7(1):109-117
pubmed: 27852011
Nature. 2004 Dec 9;432(7018):695-716
pubmed: 15592404
Trends Biochem Sci. 2001 Jun;26(6):376-84
pubmed: 11406411
Science. 2014 Dec 12;346(6215):1311-20
pubmed: 25504712
Mol Ecol Resour. 2018 Nov;18(6):1188-1195
pubmed: 30035372
Curr Opin Cell Biol. 2002 Jun;14(3):343-50
pubmed: 12067657
Nat Struct Mol Biol. 2010 May;17(5):620-8
pubmed: 20418882
BMC Genomics. 2010 Apr 28;11:270
pubmed: 20426822
Nat Genet. 2011 Aug 28;43(10):948-55
pubmed: 21873999
PLoS Genet. 2016 May 11;12(5):e1006024
pubmed: 27166679
Science. 2014 Dec 12;346(6215):1320-31
pubmed: 25504713
Science. 2014 Dec 12;346(6215):1254449
pubmed: 25504731
Nucleic Acids Res. 2004 Sep 24;32(17):5036-44
pubmed: 15448185
J Mol Biol. 1966 Aug;19(2):548-55
pubmed: 5969078
Gene. 1990 Mar 1;87(1):23-9
pubmed: 2110097
Gigascience. 2017 Oct 1;6(10):1-16
pubmed: 29020750
Heredity (Edinb). 2011 Dec;107(6):487-95
pubmed: 21673742
Genome Res. 2014 Nov;24(11):1797-807
pubmed: 25122613
Cell. 2015 Jan 29;160(3):554-66
pubmed: 25635462
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
Science. 2004 Mar 12;303(5664):1626-32
pubmed: 15016989
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761
pubmed: 29155950
Mol Cell. 2015 Jul 16;59(2):149-61
pubmed: 26186290
Front Genet. 2014 Jun 11;5:171
pubmed: 24966867
Int Rev Cytol. 2005;247:165-221
pubmed: 16344113
Genome Res. 2017 May;27(5):697-708
pubmed: 28360231
Nat Commun. 2017 Nov 10;8(1):1411
pubmed: 29127279
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Brief Bioinform. 2019 Jul 19;20(4):1160-1166
pubmed: 28968734
PLoS Genet. 2006 Dec;2(12):e221
pubmed: 17194224
Nature. 2012 Apr 11;485(7398):376-80
pubmed: 22495300
Annu Rev Anim Biosci. 2016;4:45-59
pubmed: 26884102
Nucleic Acids Res. 2016 Jan 4;44(D1):D184-9
pubmed: 26673694
EMBO J. 2012 Jan 18;31(2):330-50
pubmed: 22085927
Nat Struct Mol Biol. 2010 May;17(5):629-34
pubmed: 20418881
Mol Ecol. 2018 Jan;27(2):476-492
pubmed: 29226517
Annu Rev Anim Biosci. 2015;3:57-111
pubmed: 25689317
RNA Biol. 2009 Apr-Jun;6(2):195-202
pubmed: 19246989
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712