Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility.
Aged
Carcinoma, Pancreatic Ductal
/ genetics
Case-Control Studies
Computational Biology
/ methods
Cyclin-Dependent Kinase Inhibitor p15
/ genetics
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Male
MicroRNAs
/ genetics
Middle Aged
Pancreatic Neoplasms
/ genetics
Polymorphism, Single Nucleotide
RNA, Long Noncoding
/ genetics
association study
long noncoding RNA
pancreatic cancer
single nucleotide polymorphism
Journal
International journal of cancer
ISSN: 1097-0215
Titre abrégé: Int J Cancer
Pays: United States
ID NLM: 0042124
Informations de publication
Date de publication:
01 06 2021
01 06 2021
Historique:
revised:
14
12
2020
received:
31
08
2020
accepted:
04
01
2021
pubmed:
4
2
2021
medline:
14
9
2021
entrez:
3
2
2021
Statut:
ppublish
Résumé
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second cancer-related cause of death by 2030. Identifying novel risk factors, including genetic risk loci, could be instrumental in risk stratification and implementation of prevention strategies. Long noncoding RNAs (lncRNAs) are involved in regulation of key biological processes, and the possible role of their genetic variability has been unexplored so far. Combining genome wide association studies and functional data, we investigated the genetic variability in all lncRNAs. We analyzed 9893 PDAC cases and 9969 controls and identified a genome-wide significant association between the rs7046076 SNP and risk of developing PDAC (P = 9.73 × 10
Substances chimiques
CDKN2B protein, human
0
Cyclin-Dependent Kinase Inhibitor p15
0
MIRN1256 microRNA, human
0
MicroRNAs
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2779-2788Informations de copyright
© 2021 UICC.
Références
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941-1953.
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913-2921.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70:7-30.
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022.
Zhu H, Li T, Du Y, Li M. Pancreatic cancer: challenges and opportunities. BMC Med. 2018;16:214.
Midha S, Chawla S, Garg PK. Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Cancer Lett. 2016;381:269-277.
Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44:186-198.
Carreras-Torres R, Johansson M, Gaborieau V, et al. The role of obesity, type 2 diabetes, and metabolic factors in pancreatic cancer: a Mendelian randomization study. J Natl Cancer Inst. 2017;109(9):djx012.
Langdon RJ, Richmond RC, Hemani G, et al. A phenome-wide Mendelian randomization study of pancreatic cancer using summary genetic data. Cancer Epidemiol Biomarkers Prev. 2019;28:2070-2078.
Lu Y, Gentiluomo M, Lorenzo-Bermejo J, et al. Mendelian randomisation study of the effects of known and putative risk factors on pancreatic cancer. J Med Genet. 2020;57(12):820-828.
Klein AP, Wolpin BM, Risch HA, et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun. 2018;9:556.
Campa D, Pastore M, Gentiluomo M, et al. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget. 2016;7:57011-57020.
Gentiluomo M, Lu Y, Canzian F, Campa D. Genetic variants in taste-related genes and risk of pancreatic cancer. Mutagenesis. 2019;34(5-6):391-394. http://doi.org/10.1093/mutage/gez032.
Lin Y, Nakatochi M, Hosono Y, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020;11:3175.
Campa D, Rizzato C, Stolzenberg-Solomon R, et al. TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int J Cancer. 2015;137:2175-2183.
Campa D, Rizzato C, Bauer AS, et al. Lack of replication of seven pancreatic cancer susceptibility loci identified in two Asian populations. Cancer Epidemiol Biomarkers Prev. 2013;22:320-323.
Gentiluomo M, Peduzzi G, Lu Y, Campa D, Canzian F. Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis. 2019;34(5-6):395-401.
Xu X, Qian D, Liu H, et al. Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk. Mol Carcinog. 2019;58:1338-1348.
Feng Y, Liu H, Duan B, et al. Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic. Cancer. 2019;40:521-528.
Yang W, Liu H, Duan B, et al. Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Sci. 2019;110:2022-2032.
Gentiluomo M, Canzian F, Nicolini A, Gemignani F, Landi S, Campa, D. Germline genetic variability in pancreatic cancer risk and prognosis. Seminars in Cancer Biology. 2020. http://doi.org/10.1016/j.semcancer.2020.08.003.
Galeotti AA, Gentiluomo M, Rizzato C, et al. Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. Journal of Medical Genetics. 2020;jmedgenet-2020. http://doi.org/10.1136/jmedgenet-2020-106961. Online ahead of print.
Kumar V, Westra H-J, Karjalainen J, et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet. 2013;9:e1003201.
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199-208.
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol. 2018;60:25.
Huang X, Zhi X, Gao Y, Ta N, Jiang H, Zheng J. LncRNAs in pancreatic. Cancer. 2016;7:57379-57390.
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033-1055.
Gao P, Wei G-H. Genomic insight into the role of lncRNA in cancer susceptibility. Int J Mol Sci. 2017;18(6):1239.
Kim JO, Jun HH, Kim EJ, et al. Genetic variants of HOTAIR associated with colorectal cancer susceptibility and mortality. Front Oncol. 2020;10:72.
Deng Y, Zhou L, Li N, et al. Impact of four lncRNA polymorphisms (rs2151280, rs7763881, rs1136410, and rs3787016) on glioma risk and prognosis: a case-control study. Mol Carcinog. 2019;58:2218-2229.
Yuan H, Liu H, Liu Z, et al. A novel genetic variant in long non-coding RNA gene NEXN-AS1 is associated with risk of lung cancer. Sci Rep. 2016;6:34234.
Ji X, Zhang J, Liu L, et al. Association of tagSNPs at lncRNA MALAT-1 with HCC susceptibility in a southern Chinese population. Sci Rep. 2019;9:10895.
Lu Y, Beeghly-Fadiel A, Wu L, et al. A transcriptome-wide association study among 97,898 women to identify candidate susceptibility genes for epithelial ovarian cancer risk. Cancer Res. 2018;78:5419-5430.
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic. Cancer. 2009;41:986-990.
Petersen GM, Amundadottir L, Fuchs CS, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42:224-228.
Wolpin BM, Rizzato C, Kraft P, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46:994-1000.
Childs EJ, Mocci E, Campa D, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47:911-916.
Campa D, Rizzato C, Capurso G, et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease ReseArch (PANDoRA) consortium. Dig Liver Dis. 2013;45:95-99.
Zhao Y, Li H, Fang S, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016;44:D203-D208.
Xie C, Yuan J, Li H, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014;42:D98-D103.
Miao Y-R, Liu W, Zhang Q, Guo A-Y. lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 2018;46:D276-D280.
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.
Ghazavi F, De Moerloose B, Van Loocke W, et al. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic. Leukemia. 2016;7:73769-73780.
DiStefano JK. The emerging role of long noncoding RNAs in human disease. Disease Gene Identification. Methods in Molecular Biology, Vol. 1706. New York: Humana Press; 2018:91-110. https://doi.org/10.1007/978-1-4939-7471-9_6.
Yang T, Zhang Z, Zhang J, et al. The rs2147578 C > G polymorphism in the Inc-LAMC2-1:1 gene is associated with increased neuroblastoma risk in the Henan children. BMC Cancer. 2018;18:948.
Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399-405.
Campa D, Capurso G, Pastore M, et al. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci Rep. 2016;6:39565.
Ter-Minassian M, Wang Z, Asomaning K, et al. Genetic associations with sporadic neuroendocrine tumor risk. Carcinogenesis. 2011;32:1216-1222.
Ang S-F, Zhao Z-S, Lim L, Manser E. DAAM1 is a formin required for centrosome re-orientation during cell migration. PLoS ONE. 2010;5(9):e13064. http://doi.org/10.1371/journal.pone.0013064.
Xiong H, Yan T, Zhang W, et al. miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell Signal. 2018;44:33-42.