Simulating the ghost: quantum dynamics of the solvated electron.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 Feb 2021
03 Feb 2021
Historique:
received:
03
07
2020
accepted:
04
01
2021
entrez:
4
2
2021
pubmed:
5
2
2021
medline:
5
2
2021
Statut:
epublish
Résumé
The nature of the bulk hydrated electron has been a challenge for both experiment and theory due to its short lifetime and high reactivity, and the need for a high-level of electronic structure theory to achieve predictive accuracy. The lack of a classical atomistic structural formula makes it exceedingly difficult to model the solvated electron using conventional empirical force fields, which describe the system in terms of interactions between point particles associated with atomic nuclei. Here we overcome this problem using a machine-learning model, that is sufficiently flexible to describe the effect of the excess electron on the structure of the surrounding water, without including the electron in the model explicitly. The resulting potential is not only able to reproduce the stable cavity structure but also recovers the correct localization dynamics that follow the injection of an electron in neat water. The machine learning model achieves the accuracy of the state-of-the-art correlated wave function method it is trained on. It is sufficiently inexpensive to afford a full quantum statistical and dynamical description and allows us to achieve accurate determination of the structure, diffusion mechanisms, and vibrational spectroscopy of the solvated electron.
Identifiants
pubmed: 33536410
doi: 10.1038/s41467-021-20914-0
pii: 10.1038/s41467-021-20914-0
pmc: PMC7859219
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
766Commentaires et corrections
Type : ErratumIn
Références
J Phys Chem Lett. 2017 May 4;8(9):2055-2059
pubmed: 28407469
Sci Adv. 2020 Jan 17;6(3):eaaz0385
pubmed: 32010776
Phys Chem Chem Phys. 2019 Oct 7;21(37):20538-20565
pubmed: 31498344
Science. 2010 Jul 2;329(5987):65-9
pubmed: 20595609
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1110-1115
pubmed: 30610171
J Chem Phys. 2014 Nov 7;141(17):174110
pubmed: 25381505
Science. 1966 Jan 7;151(3706):70-1
pubmed: 17842089
J Chem Phys. 2016 Apr 7;144(13):130901
pubmed: 27059554
J Phys Chem Lett. 2019 Sep 5;10(17):4777-4782
pubmed: 31382737
Analyst. 2016 Nov 21;141(22):6329-6337
pubmed: 27774531
Phys Rev Lett. 2008 Apr 11;100(14):146401
pubmed: 18518055
Chem Sci. 2019 Jun 19;10(31):7442-7448
pubmed: 32180919
J Phys Chem Lett. 2020 May 7;11(9):3724-3730
pubmed: 32315196
J Am Chem Soc. 2003 Feb 5;125(5):1394-402
pubmed: 12553843
J Chem Theory Comput. 2016 Apr 12;12(4):1953-64
pubmed: 26881726
Phys Rev Lett. 2007 Apr 6;98(14):146401
pubmed: 17501293
J Chem Theory Comput. 2016 May 10;12(5):2214-23
pubmed: 27018709
J Phys Chem Lett. 2017 Apr 6;8(7):1545-1551
pubmed: 28296422
J Chem Phys. 2014 Jun 21;140(23):234116
pubmed: 24952532
Int J Mol Sci. 2019 Aug 16;20(16):
pubmed: 31426385
J Phys Chem B. 2019 Sep 26;123(38):8074-8085
pubmed: 31442044
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14282-7
pubmed: 16973747
J Phys Chem Lett. 2014 Sep 4;5(17):3066-7
pubmed: 26278261
J Phys Chem Lett. 2017 Apr 6;8(7):1424-1428
pubmed: 28296416
Chem Rev. 2016 Jul 13;116(13):7529-50
pubmed: 27049513
Sci Adv. 2019 Aug 30;5(8):eaaw6896
pubmed: 31497644
J Chem Theory Comput. 2013 Feb 12;9(2):1103-14
pubmed: 26588754
Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3890-3893
pubmed: 30776181
Science. 2005 Aug 5;309(5736):914-7
pubmed: 16081731
Nat Chem. 2014 Aug;6(8):697-701
pubmed: 25054939
J Chem Theory Comput. 2020 Feb 11;16(2):1263-1270
pubmed: 31914315
J Chem Phys. 2020 May 21;152(19):194103
pubmed: 33687235
J Chem Theory Comput. 2019 Mar 12;15(3):1827-1840
pubmed: 30677296