The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 02 2021
Historique:
received: 15 07 2020
accepted: 12 01 2021
entrez: 4 2 2021
pubmed: 5 2 2021
medline: 23 2 2021
Statut: epublish

Résumé

Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.

Identifiants

pubmed: 33536437
doi: 10.1038/s41467-021-21095-6
pii: 10.1038/s41467-021-21095-6
pmc: PMC7859208
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

775

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R003882/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/S003681/1
Pays : United Kingdom

Références

Hadfield, J. D., Nutall, A., Osorio, D. & Owens, I. P. F. Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J. Evol. Biol. 20, 549–557 (2007).
pubmed: 17305821 doi: 10.1111/j.1420-9101.2006.01262.x
Rittschof, C. C. & Robinson, G. E. Genomics: moving behavioural ecology beyond the phenotypic gambit. Anim. Behav. 92, 263–270 (2014).
pubmed: 24954950 pmcid: 4061759 doi: 10.1016/j.anbehav.2014.02.028
Rubin, H. The phenotypic gambit: selective pressures and ESS methodology in evolutionary game theory. Biol. Philos. 31, 551–569 (2016).
doi: 10.1007/s10539-016-9524-4
Réale, D., Dingemanse, N. J., Kazem, A. J. & Wright, J. Evolutionary and ecological approaches to the study of personality. Philos. Trans. R. Soc. B. 365, 3947–3946 (2010).
doi: 10.1098/rstb.2010.0222
Chapman, B. B., Brönmark, C., Nilsson, J. Å. & Hansson, L. A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
doi: 10.1111/j.1600-0706.2011.20131.x
Fowler‐Finn, K. D. & Rodríguez, R. L. The evolution of experience‐mediated plasticity in mate preferences. J. Evol. Biol. 25, 1855–1863 (2012).
pubmed: 22817109 doi: 10.1111/j.1420-9101.2012.02573.x
Heyes, C. Blackboxing: social learning strategies and cultural evolution. Philos. Trans. R. Soc. B 371, 20150369 (2016).
doi: 10.1098/rstb.2015.0369
Horiguchi, R. et al. Characterization of gonadal soma‐derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev. Dyn. 242, 388–399 (2013).
pubmed: 23335393 doi: 10.1002/dvdy.23929
Casas, L. et al. Sex change in clownfish: molecular insights from transcriptome analysis. Sci. Rep. 6, 35461 (2016).
pubmed: 27748421 pmcid: 5066260 doi: 10.1038/srep35461
Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).
pubmed: 31309157 pmcid: 6620101 doi: 10.1126/sciadv.aaw7006
Cullen, D. A. et al. From molecules to management: mechanisms and consequences of locust phase polyphenism. Adv. Insect Physiol. 53, 167–285 (2017).
doi: 10.1016/bs.aiip.2017.06.002
Lo, N., Simpson, S. J. & Sword, G. A. Epigenetics and developmental plasticity in orthopteroid insects. Curr. Opin. Insect Sci. 25, 25–34 (2018).
pubmed: 29602359 doi: 10.1016/j.cois.2017.11.003
Simola, D. F. et al. Epigenetic (re) programming of caste-specific behavior in the ant Camponotus floridanus. Science 351, aac6633 (2016).
pubmed: 26722000 pmcid: 5057185 doi: 10.1126/science.aac6633
Gospocic, J. et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 170, 748–759 (2017).
pubmed: 28802044 pmcid: 5564227 doi: 10.1016/j.cell.2017.07.014
Libbrecht, R., Oxley, P. R. & Kronauer, D. J. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biol. 16, 89 (2018).
pubmed: 30103762 pmcid: 6090591 doi: 10.1186/s12915-018-0558-8
Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. Genome Biol. Evol. 10, 2749–2758 (2018).
pubmed: 30247544 pmcid: 6190964 doi: 10.1093/gbe/evy212
Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie 49, 13–30 (2018).
doi: 10.1007/s13592-017-0527-1
Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P. & Keller, L. Nature versus nurture in social insect caste differentiation. Trends Ecol. Evol. 25, 275–282 (2010).
pubmed: 20106547 doi: 10.1016/j.tree.2009.12.001
Strassmann, J. E. et al. The cost of queen loss in the social wasp Polistes dominulus (Hymenoptera: Vespidae). J. Kans. Entomol. Soc. 77, 343–355 (2004).
doi: 10.2317/E-15.1
Tibbetts, E. A. & Huang, Z. Y. The challenge hypothesis in an insect: juvenile hormone increases during reproductive conflict following queen loss in Polistes wasps. Am. Nat. 176, 123–130 (2010).
pubmed: 20515411 doi: 10.1086/653664
Chandra, V. et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science 361, 398–402 (2018).
pubmed: 30049879 pmcid: 6178808 doi: 10.1126/science.aar5723
Starks, P. T., Turillazzi, S. & West-Eberhard, M. J. Polistes paper wasps: emergence of a model genus. Ann. Zool. Fenn. 43, 385–386 (2006).
Jandt, J. M., Tibbetts, E. A. & Toth, A. L. Polistes paper wasps: a model genus for the study of social dominance hierarchies. Insectes Soc. 61, 11–27 (2014).
doi: 10.1007/s00040-013-0328-0
Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).
pubmed: 26859767 doi: 10.1111/mec.13578
Geffre, A. C. et al. Transcriptomics of an extended phenotype: parasite manipulation of wasp social behaviour shifts expression of caste-related genes. Proc. R. Soc. B 284, 20170029 (2017).
pubmed: 28404777 doi: 10.1098/rspb.2017.0029 pmcid: 5394664
Manfredini, F., Brown, M. J. & Toth, A. L. Candidate genes for cooperation and aggression in the social wasp Polistes dominula. J. Comp. Physiol. A 204, 449–463 (2018).
doi: 10.1007/s00359-018-1252-6
Pardi, L. Dominance order in Polistes wasps. Physiol. Zool. 21, 1–13 (1948).
pubmed: 18898533 doi: 10.1086/physzool.21.1.30151976
Tsuji, K. & Tsuji, N. Why is dominance hierarchy age-related in social insects? The relative longevity hypothesis. Behav. Ecol. Sociobiol. 58, 517–526 (2005).
doi: 10.1007/s00265-005-0929-3
Taylor, B. A., Cini, A., Cervo, R., Reuter, M., & Sumner, S. Queen succession conflict in the paper wasp Polistes dominula is mitigated by age-based convention. Behav. Ecol. 31, araa045 (2020).
Segal, N. H. et al. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am. J. Pathol. 163, 691–700 (2003).
pubmed: 12875988 pmcid: 1868218 doi: 10.1016/S0002-9440(10)63696-6
Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P. & Saeys, Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26, 392–398 (2010).
pubmed: 19942583 doi: 10.1093/bioinformatics/btp630
Huang, S. et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. 15, 41–51 (2018).
Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. 10, 802–814 (2019).
doi: 10.1111/2041-210X.13172
Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).
pubmed: 17160063 doi: 10.1038/nbt1206-1565
Toth, A. L. et al. Shared genes related to aggression, rather than chemical communication, are associated with reproductive dominance in paper wasps (Polistes metricus). BMC Genomics 15, 75 (2014).
pubmed: 24472515 pmcid: 3922164 doi: 10.1186/1471-2164-15-75
Patalano, S. et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc. Natl. Acad. Sci. USA 112, 13970–13975 (2015).
pubmed: 26483466 doi: 10.1073/pnas.1515937112 pmcid: 4653166
Miyano, S. Worker reproduction and related behavior in orphan colonies of a Japanese paper wasp, Polistes jadwigae (Hymenoptera, Vespidae). J. Ethol. 9, 135–146 (1991).
doi: 10.1007/BF02350218
Dapporto, L., Sledge, F. M. & Turillazzi, S. Dynamics of cuticular chemical profiles of Polistes dominulus workers in orphaned nests (Hymenoptera, Vespidae). J. Insect Physiol. 51, 969–973 (2005).
pubmed: 15941571 doi: 10.1016/j.jinsphys.2005.04.011
Wojciechowski, M. et al. Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res. 28, 1532–1542 (2018).
pubmed: 30135090 pmcid: 6169885 doi: 10.1101/gr.236497.118
Duncan, E. J., Leask, M. P. & Dearden, P. K. Genome architecture facilitates phenotypic plasticity in the honeybee (Apis mellifera). Mol. Biol. Evol. 37, 1964–1978 (2020).
pubmed: 32134461 pmcid: 7306700 doi: 10.1093/molbev/msaa057
Patalano, S. et al. Specialisation and plasticity in a primitively social insect. Preprint at https://www.biorxiv.org/content/10.1101/2020.03.31.007492v1 (2020).
Matson, C. K. et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104 (2011).
pubmed: 21775990 pmcid: 3150961 doi: 10.1038/nature10239
Yoshimura, H. & Yamada, Y. Y. Caste-fate determination primarily occurs after adult emergence in a primitively eusocial paper wasp: significance of the photoperiod during the adult stage. Sci. Nat. 105, 15 (2018).
doi: 10.1007/s00114-018-1541-5
Bell, A. M. & Robinson, G. E. Behavior and the dynamic genome. Science 332, 1161–1162 (2011).
pubmed: 21636765 pmcid: 3319369 doi: 10.1126/science.1203295
Rittschof, C. C. et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc. Natl Acad. Sci. USA 111, 17929–17934 (2014).
pubmed: 25453090 doi: 10.1073/pnas.1420369111 pmcid: 4273386
Monnin, T., Cini, A., Lecat, V., Fédérici, P. & Doums, C. No actual conflict over colony inheritance despite high potential conflict in the social wasp Polistes dominulus. Proc. R. Soc. B 276, 1593–1601 (2009).
pubmed: 19203923 doi: 10.1098/rspb.2008.1739 pmcid: 2660987
Toth, A. L. & Rehan, S. M. Molecular evolution of insect sociality: an eco-evo-devo perspective. Annu. Rev. Entomol. 62, 419–442 (2017).
pubmed: 27912247 doi: 10.1146/annurev-ento-031616-035601
Gomulski, L. M. et al. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS ONE 7, e30857 (2012).
Zhou, S., Mackay, T. F. & Anholt, R. R. Transcriptional and epigenetic responses to mating and aging in Drosophila melanogaster. BMC Genom. 15, 927 (2014).
doi: 10.1186/1471-2164-15-927
Manfredini, F. et al. Neurogenomic signatures of successes and failures in life-history transitions in a key insect pollinator. Genome Biol. Evol. 9, 3059–3072 (2017).
pubmed: 29087523 pmcid: 5714134 doi: 10.1093/gbe/evx220
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616 pubmed: 19910308
Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 15, 10–1186 (2014).
Tarazona, S., García, F., Ferrer, A., Dopazo, J. & Conesa, A. NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet. J. 17, 18–19 (2011).
doi: 10.14806/ej.17.B.265
Dalman, M. R., Deeter, A., Nimishakavi, G. & Duan, Z. H. Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinform. 13, 11 (2012).
doi: 10.1186/1471-2105-13-S2-S11
Jung, K., Friede, T. & Beißbarth, T. Reporting FDR analogous confidence intervals for the log fold change of differentially expressed genes. BMC Bioinform. 1, 288 (2011).
doi: 10.1186/1471-2105-12-288
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Cini, A., Meconcelli, S. & Cervo, R. Ovarian indexes as indicators of reproductive investment and egg-laying activity in social insects: a comparison among methods. Insectes Soc. 60, 393–402 (2013).
doi: 10.1007/s00040-013-0305-7
Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
doi: 10.1111/2041-210X.12584
Elo, A. E. The Rating of Chess Players, Past and Present. (Arco Pub, New York, 1978).
Neumann, C. et al. Assessing dominance hierarchies: validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
doi: 10.1016/j.anbehav.2011.07.016
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
pubmed: 23071270 doi: 10.1093/bioinformatics/bts611
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 1–13 (2019).
doi: 10.1186/s13059-019-1910-1
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2020).
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8. https://CRAN.R-project.org/package=e1071 . (2017).
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).
doi: 10.1186/s13059-019-1832-y
Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015).
pubmed: 25897122 pmcid: 4489294 doi: 10.1093/nar/gkv350
Alexa, A., & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv. 27 (2009).

Auteurs

Benjamin A Taylor (BA)

Centre for Biodiversity & Environment Research, University College London, London, UK. benjamin.taylor.16@ucl.ac.uk.
Department of Genetics, Evolution & Environment, University College London, London, UK. benjamin.taylor.16@ucl.ac.uk.

Alessandro Cini (A)

Centre for Biodiversity & Environment Research, University College London, London, UK.
Department of Genetics, Evolution & Environment, University College London, London, UK.
Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy.

Christopher D R Wyatt (CDR)

Centre for Biodiversity & Environment Research, University College London, London, UK.
Department of Genetics, Evolution & Environment, University College London, London, UK.

Max Reuter (M)

Department of Genetics, Evolution & Environment, University College London, London, UK.
Centre for Life's Origins and Evolution, University College London, London, UK.

Seirian Sumner (S)

Centre for Biodiversity & Environment Research, University College London, London, UK.
Department of Genetics, Evolution & Environment, University College London, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH