Skin-resident innate lymphoid cells converge on a pathogenic effector state.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2021
Historique:
received: 23 10 2018
accepted: 24 12 2020
pubmed: 5 2 2021
medline: 23 7 2021
entrez: 4 2 2021
Statut: ppublish

Résumé

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines

Identifiants

pubmed: 33536623
doi: 10.1038/s41586-021-03188-w
pii: 10.1038/s41586-021-03188-w
pmc: PMC8336632
mid: NIHMS1658011
doi:

Substances chimiques

Chromatin 0
Interleukin-23 0
RNA, Small Cytoplasmic 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

128-132

Subventions

Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL107202
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI026918
Pays : United States
Organisme : NCI NIH HHS
ID : K99 CA256526
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI026918
Pays : United States
Organisme : NIAMS NIH HHS
ID : K08 AR075880
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Références

Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).
pubmed: 30142344 doi: 10.1016/j.cell.2018.07.017
Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).
pubmed: 24458645 pmcid: 4313730 doi: 10.1126/science.1247606
Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).
pubmed: 23603794 pmcid: 4282745 doi: 10.1038/ni.2584
Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR
pubmed: 24658504 doi: 10.1038/jid.2014.146
Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44
pubmed: 24352038 doi: 10.1038/jid.2013.477
Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).
pubmed: 22546855 pmcid: 3366412 doi: 10.1172/JCI61862
Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1
pubmed: 25531830 doi: 10.1038/ni.3078
Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127
pubmed: 26187413 doi: 10.1016/j.immuni.2015.06.019
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).
pubmed: 20534450 pmcid: 2890739 doi: 10.1073/pnas.1005641107
Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).
pubmed: 27111142 doi: 10.1038/ni.3447
Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).
pubmed: 27111143 pmcid: 5345745 doi: 10.1038/ni.3443
Bal, S. M. et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).
pubmed: 27111145 doi: 10.1038/ni.3444
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt
pubmed: 21093318 pmcid: 3042726 doi: 10.1016/j.immuni.2010.10.017
Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019).
pubmed: 31263279 doi: 10.1038/s41590-019-0423-0
Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).
pubmed: 26472762 pmcid: 4720139 doi: 10.1126/science.aac9593
Kobayashi, T. et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 176, 982–997 (2019).
pubmed: 30712873 pmcid: 6532063 doi: 10.1016/j.cell.2018.12.031
Zeis, P. et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors. Immunity 53, 775–792 (2020).
pubmed: 33002412 pmcid: 7611573 doi: 10.1016/j.immuni.2020.09.002
Ghaedi, M. et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J. Exp. Med. 217, e20182293 (2020).
pubmed: 31816636 doi: 10.1084/jem.20182293
Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100 (2017).
pubmed: 28283063 doi: 10.1016/j.cell.2017.02.021
Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).
pubmed: 29302015 pmcid: 6956613 doi: 10.1126/science.aam5809
Li, Z. et al. Epidermal Notch1 recruits RORγ
pubmed: 27099134 pmcid: 4844683 doi: 10.1038/ncomms11394
Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).
pubmed: 17074928 pmcid: 2118145 doi: 10.1084/jem.20060244
Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).
pubmed: 21982596 pmcid: 3205267 doi: 10.1016/j.immuni.2011.08.001
Califano, D. et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43, 354–368 (2015).
pubmed: 26231117 pmcid: 4657441 doi: 10.1016/j.immuni.2015.07.005
Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 29 (2003).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
pubmed: 10835412 pmcid: 1461096 doi: 10.1093/genetics/155.2.945
Dey, K. K., Hsiao, C. J. & Stephens, M. Visualizing the structure of RNA-seq expression data using grade of membership models. PLoS Genet. 13, e1006599 (2017).
pubmed: 28333934 pmcid: 5363805 doi: 10.1371/journal.pgen.1006599
Blei, D. M. Probabilistic topic models. Commun. ACM 55, 77–84 (2012).
doi: 10.1145/2133806.2133826
Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).
pubmed: 31624246 pmcid: 6797728 doi: 10.1038/s41467-019-12464-3
Cao, Z., Sun, X., Icli, B., Wara, A. K. & Feinberg, M. W. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116, 4404–4414 (2010).
pubmed: 20616217 pmcid: 2996110 doi: 10.1182/blood-2010-05-285353
Galloway, A. et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science 352, 453–459 (2016).
pubmed: 27102483 doi: 10.1126/science.aad5978
Yosef, N. et al. Dynamic regulatory network controlling T
pubmed: 23467089 pmcid: 3637864 doi: 10.1038/nature11981
Wang, S. et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201–216 (2017).
pubmed: 28844693 doi: 10.1016/j.cell.2017.07.027
Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).
pubmed: 25621825 pmcid: 4372143 doi: 10.1038/ni.3094
Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).
pubmed: 28902842 pmcid: 5746044 doi: 10.1038/nature24029
Nelson, B. H. IL-2, regulatory T cells, and tolerance. J. Immunol. 172, 3983–3988 (2004).
pubmed: 15034008 doi: 10.4049/jimmunol.172.7.3983
Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).
pubmed: 15771565 doi: 10.1146/annurev.immunol.23.021704.115839
Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723 (2019).
pubmed: 31604686 pmcid: 7076585 doi: 10.1016/j.immuni.2019.09.005
Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 1517 (2019).
pubmed: 30849376 pmcid: 6615720 doi: 10.1016/j.cell.2019.02.026
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).
pubmed: 29700225 pmcid: 6247916 doi: 10.1126/science.aar3131
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
pubmed: 27571553 doi: 10.1038/nmeth.3971
Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).
pubmed: 24509713 pmcid: 4003507 doi: 10.1038/nature13047
Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).
pubmed: 24725403 doi: 10.1016/j.cell.2014.03.030
Yu, Y. et al. Single-cell RNA-seq identifies a PD-1
pubmed: 27749818 doi: 10.1038/nature20105
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).
pubmed: 23021777 pmcid: 3503487 doi: 10.1016/j.cell.2012.09.016
Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).
pubmed: 22992523 pmcid: 3537508 doi: 10.1038/nature11530
van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).
pubmed: 19380832 doi: 10.4049/jimmunol.0802999
Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).
pubmed: 29466336 pmcid: 5899604 doi: 10.1038/nature25741
Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).
pubmed: 29364285 pmcid: 6555401 doi: 10.1038/nature25022
Weinreich, M. A. et al. KLF2 transcription-factor deficiency in T cells results in unrestrained cytokine production and upregulation of bystander chemokine receptors. Immunity 31, 122–130 (2009).
pubmed: 19592277 pmcid: 2724594 doi: 10.1016/j.immuni.2009.05.011
Esplugues, E. et al. Control of T
pubmed: 21765430 pmcid: 3148838 doi: 10.1038/nature10228
Liang, H. E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13, 58–66 (2011).
pubmed: 22138715 pmcid: 3242938 doi: 10.1038/ni.2182
Price, A. E., Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Marking and quantifying IL-17A-producing cells in vivo. PLoS ONE 7, e39750 (2012).
pubmed: 22768117 pmcid: 3387253 doi: 10.1371/journal.pone.0039750
Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).
pubmed: 20534524 pmcid: 2895098 doi: 10.1073/pnas.1003988107
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
pubmed: 28100584 pmcid: 5340976 doi: 10.1101/gr.209601.116
Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793–798 (2020).
pubmed: 32719530 pmcid: 7437817 doi: 10.1038/s41592-020-0905-x
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 9, e98679 (2014).
pubmed: 24914678 pmcid: 4051631 doi: 10.1371/journal.pone.0098679
Erosheva, E. A. Latent Class Representation of the Grade of Membership Model (University of Washington, 2006).
Taddy, M. On estimation and selection for topic models. Proc. Mach. Learn. Res. 22, 1184–1193 (2012).
Blei, D. M., Jordan, M. I., Griffiths, T. L. & Tenenbaum, J. B. Hierarchical topic models and the nested chinese restaurant process. In Proc. 16th International Conference on Neural Information Processing Systems (eds Thrun, S., Saul, L. K. & Schölfopf, B.) 17–24 (MIT Press, 2003).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543 pmcid: 7056644 doi: 10.1038/s41592-019-0686-2
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891 pmcid: 4676162 doi: 10.1186/s13059-015-0844-5
Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48 (D1), D682–D688 (2020).
pubmed: 31691826
Stuart, T., Srivastava, A., Lareau, C. & Satija, R. Multimodal single-cell chromatin analysis with Signac. Preprint at https://doi.org/10.1101/2020.11.09.373613 (2020).
Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
pubmed: 25953818 pmcid: 4836442 doi: 10.1126/science.aab1601
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706 pmcid: 5623146 doi: 10.1038/nmeth.4401
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46 (D1), D260–D266 (2018).
pubmed: 29140473 doi: 10.1093/nar/gkx1126

Auteurs

Piotr Bielecki (P)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. piotr.stanislaw.bielecki@gmail.com.
Celsius Therapeutics, Cambridge, MA, USA. piotr.stanislaw.bielecki@gmail.com.

Samantha J Riesenfeld (SJ)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. sriesenfeld@uchicago.edu.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. sriesenfeld@uchicago.edu.
Department of Medicine, University of Chicago, Chicago, IL, USA. sriesenfeld@uchicago.edu.

Jan-Christian Hütter (JC)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Elena Torlai Triglia (E)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Monika S Kowalczyk (MS)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Roberto R Ricardo-Gonzalez (RR)

Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
Department of Medicine, Sandler Asthma Research Center, University of California San Francisco, San Francisco, CA, USA.

Mi Lian (M)

Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Maria C Amezcua Vesely (MC)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
Howard Hughes Medical Institute, Chevy Chase, MD, USA.

Lina Kroehling (L)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Hao Xu (H)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Michal Slyper (M)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Christoph Muus (C)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Leif S Ludwig (LS)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Elena Christian (E)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Liming Tao (L)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Amanda J Kedaigle (AJ)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Holly R Steach (HR)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Autumn G York (AG)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Mathias H Skadow (MH)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Parastou Yaghoubi (P)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Danielle Dionne (D)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Abigail Jarret (A)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Heather M McGee (HM)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Sciences, La Jolla, CA, USA.

Caroline B M Porter (CBM)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Paula Licona-Limón (P)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico.

Will Bailis (W)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Ruaidhrí Jackson (R)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.

Nicola Gagliani (N)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.

Georg Gasteiger (G)

Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.

Richard M Locksley (RM)

Department of Medicine, Sandler Asthma Research Center, University of California San Francisco, San Francisco, CA, USA.
Howard Hughes Medical Institute, Chevy Chase, MD, USA.

Aviv Regev (A)

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. aregev@broadinstitute.org.
Howard Hughes Medical Institute, Chevy Chase, MD, USA. aregev@broadinstitute.org.
Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. aregev@broadinstitute.org.
Genentech, South San Francisco, CA, USA. aregev@broadinstitute.org.

Richard A Flavell (RA)

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. richard.flavell@yale.edu.
Howard Hughes Medical Institute, Chevy Chase, MD, USA. richard.flavell@yale.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH