Surface slicks are pelagic nurseries for diverse ocean fauna.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 02 2021
Historique:
received: 04 04 2020
accepted: 15 12 2020
entrez: 5 2 2021
pubmed: 6 2 2021
medline: 6 2 2021
Statut: epublish

Résumé

Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2-110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km

Identifiants

pubmed: 33542255
doi: 10.1038/s41598-021-81407-0
pii: 10.1038/s41598-021-81407-0
pmc: PMC7862242
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3197

Références

Leis, J. M. & McCormick, M. I. The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 171–199 (Academic Press, Cambridge, 2002).
Cowen, R. K. Oceanographic influences on larval dispersal and retention and their consequences for population connectivity. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 149–170 (Academic Press, Cambridge, 2002).
Doherty, P. J. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).
pubmed: 17758633 doi: 10.1126/science.263.5149.935
Armsworth, P. R. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83, 1092–1104 (2002).
doi: 10.1890/0012-9658(2002)083[1092:RLPRAL]2.0.CO;2
Houde, E. D. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52–83 (1997).
doi: 10.1111/j.1095-8649.1997.tb06093.x
Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities 34, 277–327 (Springer, Boston, 1978).
Letcher, B. H., Rice, J. A., Crowder, L. B. & Rose, K. A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 53, 787–801 (1996).
doi: 10.1139/f95-241
Shanks, A. L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13, 311–315 (1983).
doi: 10.3354/meps013311
Pineda, J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427–458 (1994).
doi: 10.1357/0022240943077046
Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).
doi: 10.4319/lo.2000.45.1.0230
Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
doi: 10.4319/lo.2002.47.3.0803
Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).
doi: 10.4319/lo.2005.50.4.1033
Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A. & Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr. 127, 47–61 (2014).
doi: 10.1016/j.pocean.2014.05.010
Shulzitski, K. et al. Close encounters with eddies: Oceanographic features increase growth of larval reef fishes during their journey to the reef. Biol. Lett. 11, 20140746 (2015).
pubmed: 25631227 pmcid: 4321146 doi: 10.1098/rsbl.2014.0746
Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl. Acad. Sci. U. S. A. 113, 6928–6933 (2016).
pubmed: 27274058 pmcid: 4922168 doi: 10.1073/pnas.1601606113
Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. U. S. A. 112, 1710–1715 (2015).
pubmed: 25624488 pmcid: 4330775 doi: 10.1073/pnas.1417143112
Apel, J. R., Byrne, H. M., Proni, J. R. & Charnell, R. L. Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 80, 865–881 (1975).
doi: 10.1029/JC080i006p00865
Kingsford, M. J. Linear oceanographic features: A focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).
doi: 10.1111/j.1442-9993.1990.tb01465.x
Klymak, J. M. et al. The direct breaking of internal waves at steep topography. Oceanography 25(2), 150–159 (2012).
doi: 10.5670/oceanog.2012.50
Engel, A. et al. The Ocean’s Vital Skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 269 (2017).
doi: 10.3389/fmars.2017.00165
Jillett, J. B. & Zeldis, J. R. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37, 609–619 (1985).
Kingsford, M. J. & Choat, J. H. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91, 161–171 (1986).
doi: 10.1007/BF00569432
Shanks, A. & Wright, W. Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol. 114, 1–13 (1987).
doi: 10.1016/0022-0981(87)90135-3
Shanks, A. L. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86, 703–714 (1988).
Kingsford, M. J., Wolanski, E. & Choat, J. H. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109, 167–180 (1991).
doi: 10.1007/BF01320244
Weidberg, N., Lobón, C., López, E. & Flórez, L. G. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. 506, 15–30 (2014).
doi: 10.3354/meps10777
Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).
doi: 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2
Hughes, B. B., Levey, M. D., Brown, J. A. & Fountain, M. C. Nursery Functions of US West Coast Estuaries: The State of Knowledge for Juveniles of Focal Invertebrate and Fish Species (The Nature Conservancy, Arlington, 2014).
Sheridan, P. & Hays, C. Are mangroves nursery habitat for transient fishes and decapods?. Wetlands 23, 449–458 (2003).
doi: 10.1672/19-20
Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).
doi: 10.3989/scimar.2006.70s2105
Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).
doi: 10.1046/j.1365-2419.2001.00152.x
Govoni, J. J., Hare, J. A., Davenport, E. D., Chen, M. H. & Marancik, K. E. Mesoscale, cyclonic eddies as larval fish habitat along the southeast United States shelf: A Lagrangian description of the zooplankton community. ICES J. Mar. Sci. 67, 403–411 (2010).
doi: 10.1093/icesjms/fsp269
Merrifield, M. A. & Holloway, P. E. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. Oceans 107, 5-1-5–12 (2002).
doi: 10.1029/2001JC000996
Gove, J. M., Whitney, J.L. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. U. S. A. 53, 201907496 (2019).
Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: Micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
doi: 10.1007/BF01313508
Mundy, B. C. Checklist of the fishes of the Hawaiian archipelago. Bishop Mus. Bull. Zool. 6, 1–706 (2005).
Smith, K., Whitney, J. L., Lecky, J., Gove, J. M., Copeland, A., Kobayashi, D. R. & McManus, M. A. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. (in review).
Cheng, L. Notes on the ecology of the oceanic insect Halobates. Mar. Fish. Rev. 36(2), 1–7 (1974).
Senta, T., Kimura, M. & Kanbara, T. Predation of fishes on open-ocean species of sea-skaters (Halobates spp.). Jpn. J. Ichthyol. 40, 193–198 (1993).
West, A. P. Aspects of the Early Life History of Billfish Off Kona, Hawaii. PhD Dissertation 1–202 (University of Technology, Sydney, 2004).
Gove, J. M., Lecky, J., Walsh, W. J., Ingram, R. J., Leong, K., Polovina, J. J., Maynard, J. A., Whittier, R., Kramer, L., Schemmel, E. M., Hospital, J., Wongbusarakum, S., Conklin, E., Wiggins, C. & Williams, G. J. West Hawai‘i integrated ecosystem assessment ecosystem status report. Pacific Islands Fisheries Science Center, PIFSC Special Publication SP-19-001, 1–46 (2019).
Friedlander, A.M. Status of Hawaii’s coastal fisheries in the new millennium, Revised 2004 edition, in: 2001 Fisheries Symposium. Presented at the 2001 Fisheries Symposium, American Fisheries Society, Hawaii Chapter (2004).
Gaffney, R. Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management. Hawaii Department of Land and Natural Resources, Division of Aquatic Resources Technical Report 20–02, 1–42 (2004).
Boehlert, G. W. & Mundy, B. C. Vertical distribution of larval fishes off Kahe Point, Oahu, a site for potential ocean thermal energy development. Final Report to National Ocean Service, Division of Ocean Minerals and Energy, NOAA 1–76 (1986).
Boehlert, G. W., Watson, W. & Sun, L. C. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep-Sea Res. Part I 39, 439–466 (1992).
doi: 10.1016/0198-0149(92)90082-5
Randall, J. E. Reef and Shore Fishes of the Hawaiian Islands (University of Hawaii Press, Honolulu, Hawaii, 2007).
Hobson, E. S. Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 69–95 (1991).
Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).
doi: 10.1890/ES14-00292.1
Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).
doi: 10.3354/meps10250
Parrish, J. D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).
doi: 10.3354/meps058143
Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364, 1189–1192 (2019).
doi: 10.1126/science.aav3384 pubmed: 31857447
Grimes, C. B. & Kingsford, M. J. How do riverine plumes of different sizes influence fish larvae: Do they enhance recruitment?. Mar. Freshw. Res. 47, 191–208 (1996).
doi: 10.1071/MF9960191
Zenitani, H., Kono, N. & Tsukamoto, Y. Relationship between daily survival rates of larval Japanese anchovy (Engraulis japonicus) and concentrations of copepod nauplii in the Seto Inland Sea, Japan. Fish. Oceanogr. 16, 473–478 (2007).
doi: 10.1111/j.1365-2419.2007.00434.x
Hunter, J. R. Feeding ecology and predation of marine fish larvae. In Marine Fish Larvae: Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.) 34–77 (Washington Sea Grant Program, 1981).
Samprey, A., McKinnon, A. D., Meekan, M. G. & McCormick, M. I. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339, 1–15 (2007).
Carassou, L. & Le borgne, R. & Ponton, D. Diet of pre-settlement larvae of coral-reef fishes: Selection of prey types and sizes. J. Fish. Biol. 75, 707–715 (2009).
pubmed: 20738568 doi: 10.1111/j.1095-8649.2009.02312.x
Østergaard, P., Munk, P. & Janekarn, V. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595–606 (2005).
doi: 10.1007/s00227-004-1458-8
Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioninginterplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).
pubmed: 29703955 pmcid: 5956075 doi: 10.1038/s41396-018-0111-3
Greer, A. T. et al. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35, 939–956 (2013).
doi: 10.1093/plankt/fbt056
Benoit-Bird, K. J. & McManus, M. A. A critical time window for organismal interactions in a pelagic ecosystem. PLoS ONE 9, e97763 (2014).
pubmed: 24844981 pmcid: 4028273 doi: 10.1371/journal.pone.0097763
Benoit-Bird, K., Shroyer, E. L. & McManus, M. A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 40, 3968–3974 (2013).
doi: 10.1002/grl.50747
Sponaugle, S., Llopiz, J. K., Havel, L. N. & Rankin, T. L. Spatial variation in larval growth and gut fullness in a coral reef fish. Mar. Ecol. Prog. Ser. 383, 239–249 (2009).
doi: 10.3354/meps07988
Castro, J., Santiago, J. & Santana-Ortega, A. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish. Biol. Fish. 11, 255–277 (2002).
Kingsford, M. Biotic and abiotic structure in the pelagic environment: Importance to small fishes. Bull. Mar. Sci. 53, 393–415 (1993).
Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).
doi: 10.1038/s41559-017-0116
Gregory, M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025 (2009).
doi: 10.1098/rstb.2008.0265
Carpenter, E. J., Anderson, G. R., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
pubmed: 4628343 doi: 10.1126/science.178.4062.749
de Sá, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).
doi: 10.1016/j.envpol.2014.10.026
Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1–12 (1992).
doi: 10.3354/meps082001
Genin, A., Jaffe, J. S., Reef, R., Richter, C. & Franks, P. J. S. Swimming against the flow: A mechanism of zooplankton aggregation. Science 308, 860–862 (2005).
pubmed: 15879218 doi: 10.1126/science.1107834
Young, M. & Adams, N. J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. NZ J. Mar. Freshw. Res. 44, 167–175 (2010).
doi: 10.1080/00288330.2010.498089
Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
pubmed: 17841048 doi: 10.1126/science.241.4862.177
Morgan, S. G., Fisher, J. L. & Largier, J. L. Larval retention, entrainment, and accumulation in the lee of a small headland: Recruitment hotspots along windy coasts. Limnol. Oceanogr. 56, 161–178 (2011).
doi: 10.4319/lo.2011.56.1.0161
Leis, J. M., Siebeck, U. & Dixson, D. L. How Nemo finds home: The neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).
pubmed: 21562025 doi: 10.1093/icb/icr004
Woodson, C. B. et al. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57, 582–596 (2012).
doi: 10.4319/lo.2012.57.2.0582
Woodson, C. B. & McManus, M. A. Foraging behavior can influence dispersal of marine organisms. Limnol. Oceanogr. 52, 2701–2709 (2007).
doi: 10.4319/lo.2007.52.6.2701
Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G. & Jeffs, A. G. Adaptive avoidance of reef noise. PLoS ONE 6, e16625 (2011).
pubmed: 21326604 pmcid: 3033890 doi: 10.1371/journal.pone.0016625
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).
pubmed: 17032358 doi: 10.1111/j.1365-2656.2006.01148.x
Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2011).
doi: 10.1577/T09-105.1
Harrison, C. S., Hilsa, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 3–71 (1983).
Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
pubmed: 29995864 doi: 10.1038/s41586-018-0202-3
Pikitch, E. K. et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15, 43–64 (2014).
doi: 10.1111/faf.12004
Greer, A. T. & Woodson, C. B. Application of a predator–prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity. ICES J. Mar. Sci. 73, 1051–1061 (2016).
doi: 10.1093/icesjms/fsw001
Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10, 421–441 (2018).
doi: 10.1146/annurev-marine-121916-063619
Luiz, O. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. U. S. A. 110, 16498–16502 (2013).
pubmed: 24065830 pmcid: 3799316 doi: 10.1073/pnas.1304074110
Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).
doi: 10.3354/meps149035
Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs 28, 307–325 (2009).
doi: 10.1007/s00338-009-0469-9
Underwood, J. N. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).
pubmed: 19323171 doi: 10.1890/07-1461.1
Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fish. 18, 257–276 (1987).
doi: 10.1007/BF00004879
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Comms. 7, 1–8 (2016).
doi: 10.1038/ncomms10581
Brown, D. M. & Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 5, 225–227 (1981).
doi: 10.3354/meps005225
Isaacs, J. E. & Kidd, L. W. Isaacs-Kidd Midwater Trawl. University of California Scripps Institute of Oceanography Final Report 1, SIO Ref.53-3 (1953).
Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. (Wiley-Blackwell, Hoboken, 2006).
Tejada-Martínez, A. E., Akkerman, I. & Bazilevs, Y. Large-eddy simulation of shallow water langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J. Appl. Mech. 79, 1–12 (2011).
Miller, J. M., Leis, J. M. & Watson, W. An Atlas of Common Nearshore Marine Fish Larvae of the Hawaiian Islands (University of Hawaii Sea Grant College Program, Honolulu, 1979).
Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. & Richardson, S. L. Ontogeny and Systematics of Fishes. (American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence, Kansas, 1984).
Ozawa, T. Studies on the Oceanic Ichthyoplankton in the Western North Pacific (Kyushu University Press, Japan, 1986).
Moser, H. G. The early stages of fishes in the California current region. Calif. Cooper. Ocean. Fish. Investig. Atlas No. 33, 1–1517 (1996).
Leis, J. M. & Carson-Ewart, B. M. The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae. (Australia Museum, 2006).
Okiyama, M. An Atlas of the Early Stage Fishes in Japan. vols. 1 & 2, 2nd Ed., 1–1639 (Tokai University Press, Kanagawa, Japan, 2014).
Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).
pubmed: 16905426 doi: 10.1016/S0065-2881(06)51002-8
Kingsford, M. J. & Milicich, M. J. Presettlement phase of Parika scaber (Pisces: Monacanthidae): A temperate reef fish. Mar. Ecol. Prog. Ser. 36, 65–79 (1987).
doi: 10.3354/meps036065
Andersen, N. M. & Cheng, L. The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. Annu. Rev. 42, 119–180 (2004).
Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).
Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 360, 1959–1967 (2005).
doi: 10.1098/rstb.2005.1727
Noren, F. Small plastic particles in Swedish West Coast waters. N-Research Consultants Report 1–12 (2008).
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
pubmed: 22321064 doi: 10.1021/es2031505
Hedges, L. V., Gurevitch, J. & Curtis, P. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. & Wagner, H. vegan: community ecology package. R. package. version 2.2-1. http://CRAN.R-project.org/packagepvegan . (2015). at http://CRAN.R-project.org/packagepvegan .
Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
Legendre, P. & Legendre, L. Numerical Ecology, Third Edition. (Elsevier, Amsterdam, 2012).
Harrell, F. E., Jr. Package ‘Hmisc’—Harrell Miscellaneous. 1–363 ( http://cran.r-project.org/web/packages/Hmisc , 2012).
Wei, T. Package ‘corrplot’—Visualization of a correlation matrix v0.60. 1–16 ( https://CRAN.R-project.org/package=corrplot , 2012).
Zeileis, A., Cribari-Neto, F., Gruen, B. & Kosmidis, I. Beta Regression in R. J. Stat. Softw. 34, 1–24 (2010).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). https://www.R-project.org/ .

Auteurs

Jonathan L Whitney (JL)

Joint Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA. jw2@hawaii.edu.
Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA. jw2@hawaii.edu.
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA. jw2@hawaii.edu.

Jamison M Gove (JM)

Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA.

Margaret A McManus (MA)

Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Katharine A Smith (KA)

Joint Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Joey Lecky (J)

Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA.
Lynker Technologies LLC, Marine, Ocean, and Coastal Science and Information Group, Leesburg, VA, 20175, USA.

Philipp Neubauer (P)

Dragonfly Data Science, 158 Victoria St, Level 4, Te Aro, Wellington, 6011, New Zealand.

Jana E Phipps (JE)

Joint Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA.

Emily A Contreras (EA)

Joint Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA.

Donald R Kobayashi (DR)

Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, 96818, USA.

Gregory P Asner (GP)

Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, 85281, USA.

Classifications MeSH