Adenosine A
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
05 02 2021
05 02 2021
Historique:
received:
06
10
2020
accepted:
18
01
2021
revised:
28
12
2020
entrez:
6
2
2021
pubmed:
7
2
2021
medline:
29
6
2021
Statut:
epublish
Résumé
In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A
Identifiants
pubmed: 33547274
doi: 10.1038/s41398-021-01238-5
pii: 10.1038/s41398-021-01238-5
pmc: PMC7864914
doi:
Substances chimiques
Fmr1 protein, mouse
0
Receptor, Adenosine A2A
0
Fragile X Mental Retardation Protein
139135-51-6
Adenosine
K72T3FS567
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
112Subventions
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257
Références
de Vries, B. B., Halley, D. J., Oostra, B. A. & Niermeijer, M. F. The fragile X syndrome. J. Med. Genet. 35, 579–589 (1998).
pubmed: 9678703
pmcid: 1051369
doi: 10.1136/jmg.35.7.579
Jin, P. & Warren, S. T. Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet. 9, 901–908 (2000).
pubmed: 10767313
doi: 10.1093/hmg/9.6.901
Tranfaglia, M. R. The psychiatric presentation of fragile X: evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev. Neurosci. 33, 337–348 (2011).
pubmed: 21893938
doi: 10.1159/000329421
Newman, I., Leader, G., Chen, J. L. & Mannion, A. An analysis of challenging behavior, comorbid psychopathology, and attention-deficit/hyperactivity disorder in fragile X syndrome. Res. Dev. Disabil. 38, 7–17 (2015).
pubmed: 25543996
doi: 10.1016/j.ridd.2014.11.003
Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Prim. 3, 17065 (2017).
pubmed: 28960184
doi: 10.1038/nrdp.2017.65
Salcedo-Arellano, M. J., Dufour, B., McLennan, Y., Martinez-Cerdeno, V. & Hagerman, R. Fragile X syndrome and associated disorders: clinical aspects and pathology. Neurobiol. Dis. 136, 104740 (2020).
pubmed: 31927143
pmcid: 7027994
doi: 10.1016/j.nbd.2020.104740
Oostra, B. A. & Willemsen, R. A fragile balance: FMR1 expression levels. Hum. Mol. Genet. 12(Spec No. 2), R249–R257 (2003).
pubmed: 12952862
doi: 10.1093/hmg/ddg298
Siomi, H., Siomi, M. C., Nussbaum, R. L. & Dreyfuss, G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291–298 (1993).
pubmed: 7688265
doi: 10.1016/0092-8674(93)90420-U
Dictenberg, J. B., Swanger, S. A., Antar, L. N., Singer, R. H. & Bassell, G. J. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell. 14, 926–939 (2008).
pubmed: 18539120
pmcid: 2453222
doi: 10.1016/j.devcel.2008.04.003
Pasciuto, E. & Bagni, C. SnapShot: FMRP mRNA targets and diseases. Cell 158, 1446–1446.e1 (2014).
pubmed: 25215498
doi: 10.1016/j.cell.2014.08.035
Pasciuto, E. & Bagni, C. SnapShot: FMRP interacting proteins. Cell 159, 218–218.e1 (2014).
pubmed: 25259928
doi: 10.1016/j.cell.2014.08.036
Banerjee, A., Ifrim, M. F., Valdez, A. N., Raj, N. & Bassell, G. J. Aberrant RNA translation in fragile X syndrome: from FMRP mechanisms to emerging therapeutic strategies. Brain Res. 1693(Pt. A), 24–36 (2018).
pubmed: 29653083
pmcid: 7377270
doi: 10.1016/j.brainres.2018.04.008
Bagni, C. & Zukin, R. S. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101, 1070–1088 (2019).
pubmed: 30897358
doi: 10.1016/j.neuron.2019.02.041
Shah, S. et al. FMRP control of ribosome translocation promotes chromatin modifications and alternative splicing of neuronal genes linked to autism. Cell Rep. 30, 4459–4472.e6 (2020).
pubmed: 32234480
pmcid: 7179797
doi: 10.1016/j.celrep.2020.02.076
Sung, Y. J., Conti, J., Currie, J. R., Brown, W. T. & Denman, R. B. RNAs that interact with the fragile X syndrome RNA binding protein FMRP. Biochem. Biophys. Res. Commun. 275, 973–980 (2000).
pubmed: 10973830
doi: 10.1006/bbrc.2000.3405
Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 (2005).
pubmed: 15861180
doi: 10.1038/nrn1667
Davis, J. K. & Broadie, K. Multifarious functions of the fragile X mental retardation protein. Trends Genet. 33, 703–714 (2017).
pubmed: 28826631
pmcid: 5610095
doi: 10.1016/j.tig.2017.07.008
Jacquemont, S. et al. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum. Mol. Genet. 27, 2039–2051 (2018).
pubmed: 29590342
pmcid: 5985734
doi: 10.1093/hmg/ddy099
Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).
pubmed: 15219735
doi: 10.1016/j.tins.2004.04.009
Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).
pubmed: 18093519
pmcid: 2199268
doi: 10.1016/j.neuron.2007.12.001
Krueger, D. D. & Bear, M. F. Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu. Rev. Med. 62, 411–429 (2011).
pubmed: 21090964
pmcid: 3100156
doi: 10.1146/annurev-med-061109-134644
Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012).
pubmed: 22500629
doi: 10.1016/j.neuron.2012.03.009
pmcid: 8822597
Jacquemont, S. et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 3, 64ra1 (2011).
pubmed: 21209411
doi: 10.1126/scitranslmed.3001708
Jacquemont, S. et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl.) 231, 1237–1250 (2014).
doi: 10.1007/s00213-013-3289-0
Mullard, A. Fragile X disappointments upset autism ambitions. Nat. Rev. Drug Discov. 14, 151–153 (2015).
pubmed: 25722228
doi: 10.1038/nrd4555
Berry-Kravis, E. M. et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat. Rev. Drug Discov. 17, 280–299 (2017).
pubmed: 29217836
pmcid: 6904225
doi: 10.1038/nrd.2017.221
Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2015).
doi: 10.1016/j.neuropharm.2005.06.004
Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527–552 (2001).
pubmed: 11734617
Klinger, M., Freissmuth, M. & Nanoff, C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal. 14, 99–108 (2002).
pubmed: 11781133
doi: 10.1016/S0898-6568(01)00235-2
Chen, J. F. et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog. Neurobiol. 83, 310–331 (2007).
pubmed: 18023959
doi: 10.1016/j.pneurobio.2007.09.002
Popoli, P. et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22, 1967–1975 (2002).
pubmed: 11880527
pmcid: 6758877
doi: 10.1523/JNEUROSCI.22-05-01967.2002
Popoli, P. et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog. Neurobiol. 81, 331–348 (2007).
pubmed: 17303312
doi: 10.1016/j.pneurobio.2006.12.005
Popoli, P., Blum, D., Domenici, M. R., Burnouf, S. & Chern, Y. A critical evaluation of adenosine A2A receptors as potentially “druggable” targets in Huntington’s disease. Curr. Pharm. Des. 14, 1500–1511 (2008).
pubmed: 18537673
doi: 10.2174/138161208784480117
Cunha, R. A. Neuroprotection by adenosine in the brain: from A(1) receptor activation to A(2A) receptor blockade. Purinergic Signal. 1, 111–134 (2005).
pubmed: 18404497
pmcid: 2096528
doi: 10.1007/s11302-005-0649-1
Domenici, M. R. et al. Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. J. Neurochem. 90, 1276–1279 (2004).
pubmed: 15312183
doi: 10.1111/j.1471-4159.2004.02607.x
Tebano, M. T. et al. Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J. Neurochem. 95, 1188–1200 (2005).
pubmed: 16271052
doi: 10.1111/j.1471-4159.2005.03455.x
Osterweil, E. K., Krueger, D. D., Reinhold, K. & Bear, M. F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).
pubmed: 21084617
pmcid: 3400430
doi: 10.1523/JNEUROSCI.3888-10.2010
Sharma, A. et al. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30, 694–702 (2010).
pubmed: 20071534
pmcid: 3665010
doi: 10.1523/JNEUROSCI.3696-09.2010
Tebano, M. T. et al. Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J. Neurochem. 104, 279–286 (2008).
pubmed: 18005343
Chiodi, V. et al. Cocaine induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP. Neuropsychopharmacology 39, 569–578 (2014).
pubmed: 23989619
doi: 10.1038/npp.2013.229
Castrén, M. L. & Castrén, E. BDNF in fragile X syndrome. Neuropharmacology 76(Pt C), 729–736 (2014).
pubmed: 23727436
doi: 10.1016/j.neuropharm.2013.05.018
Goebel-Goody, S. M. et al. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol. Rev. 64, 65–87 (2012).
pubmed: 22090472
pmcid: 3250079
doi: 10.1124/pr.110.003053
The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).
Orr, A. G. et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol. Dis. 110, 29–36 (2018).
pubmed: 29100987
doi: 10.1016/j.nbd.2017.10.014
Anderson, W. W. & Collingridge, G. L. The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 71–83 (2001).
pubmed: 11459620
doi: 10.1016/S0165-0270(01)00374-0
Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).
pubmed: 12032354
doi: 10.1073/pnas.122205699
pmcid: 124340
Irwin, S. A. et al. Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146 (2002).
pubmed: 12210340
doi: 10.1002/ajmg.10500
Leuner, B., Falduto, J. & Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23, 659–665 (2003).
pubmed: 12533625
pmcid: 2740640
doi: 10.1523/JNEUROSCI.23-02-00659.2003
Paylor, R. et al. Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn. Mem. 5, 302–316 (1998).
pubmed: 10454356
pmcid: 311270
doi: 10.1101/lm.5.4.302
Dawson, G. R., Flint, J. & Wilkinson, L. S. Testing the genetics of behavior in mice. Science 285, 2068 (1999).
pubmed: 10523201
Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 3, 118–133 (2014).
pubmed: 25606362
pmcid: 4298642
doi: 10.5582/irdr.2014.01024
Ferrante, A. et al. The adenosine A(2A) receptor agonist T1-11 ameliorates neurovisceral symptoms and extends the lifespan of a mouse model of Niemann-Pick type C disease. Neurobiol. Dis. 110, 1–11 (2018).
pubmed: 29079454
doi: 10.1016/j.nbd.2017.10.013
Mallozzi, C. et al. Phosphorylation and nitration of tyrosine residues affect functional properties of Synaptophysin and Dynamin I, two proteins involved in exo-endocytosis of synaptic vesicles. Biochim. Biophys. Acta 1833, 110–121 (2013).
pubmed: 23103755
doi: 10.1016/j.bbamcr.2012.10.022
Ferrari, F. et al. The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 34, 343–354 (2007).
pubmed: 17254795
doi: 10.1016/j.mcn.2006.11.015
Godfraind, J. M. et al. Long-term potentiation in the hippocampus of fragile X knockout mice. Am. J. Med. Genet. 64, 246–251 (1996).
pubmed: 8844057
doi: 10.1002/(SICI)1096-8628(19960809)64:2<246::AID-AJMG2>3.0.CO;2-S
Paradee, W. et al. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94, 185–192 (1999).
pubmed: 10613508
doi: 10.1016/S0306-4522(99)00285-7
Hoeffer, C. A. et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 11, 332–341 (2012).
pubmed: 22268788
pmcid: 3319643
doi: 10.1111/j.1601-183X.2012.00768.x
Huber, K. M., Klann, E., Costa-Mattioli, M. & Zukin, R. S. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 35, 13836–13842 (2015).
pubmed: 26468183
pmcid: 4604222
doi: 10.1523/JNEUROSCI.2656-15.2015
Popoli, P. et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25, 505–513 (2001).
pubmed: 11557164
doi: 10.1016/S0893-133X(01)00256-1
Ferré, S. et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl Acad. Sci. USA 99, 11940–11945 (2002).
pubmed: 12189203
doi: 10.1073/pnas.172393799
pmcid: 129373
Díaz-Cabiale, Z. et al. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci. Lett. 324, 154–158 (2002).
pubmed: 11988350
doi: 10.1016/S0304-3940(02)00179-9
Coccurello, R., Breysse, N. & Amalric, M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29, 1451–1461 (2004).
pubmed: 15039773
doi: 10.1038/sj.npp.1300444
Rodrigues, R. J., Alfaro, T. M., Rebola, N., Oliveira, C. R. & Cunha, R. A. Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem. 92, 433–441 (2005).
pubmed: 15659214
doi: 10.1111/j.1471-4159.2004.02887.x
Goh, J. J. & Manahan-Vaughan, D. Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cereb. Cortex. 23, 1118–1125 (2013).
pubmed: 22510536
doi: 10.1093/cercor/bhs089
Chen, Y. et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc. Natl Acad. Sci. USA 107, 13123–13128 (2010).
pubmed: 20615973
doi: 10.1073/pnas.1003825107
pmcid: 2919915
Weber, J. D. et al. Voice of people with fragile X syndrome and their families: reports from a survey on treatment priorities. Brain Sci. 9, 18 (2019).
pmcid: 6406416
doi: 10.3390/brainsci9020018
Li, W. et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol. Dis. 79, 70–80 (2015).
pubmed: 25892655
doi: 10.1016/j.nbd.2015.03.030
Tyebji, S. et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington’s disease. Neurobiol. Dis. 74, 41–57 (2015).
pubmed: 25449908
doi: 10.1016/j.nbd.2014.11.004
Dall’Igna, O. P. et al. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol. 203, 241–245 (2007).
pubmed: 17007839
doi: 10.1016/j.expneurol.2006.08.008
Canas, P. M. et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci. 29, 14741–14751 (2009).
pubmed: 19940169
pmcid: 6665997
doi: 10.1523/JNEUROSCI.3728-09.2009
Ronesi, J. A. & Huber, K. M. Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J. Neurosci. 28, 543–547 (2008).
pubmed: 18184796
pmcid: 6670508
doi: 10.1523/JNEUROSCI.5019-07.2008
Kumari, D. et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum. Mutat. 35, 1485–1494 (2014).
pubmed: 25224527
pmcid: 4287266
doi: 10.1002/humu.22699
Telias, M. Molecular mechanisms of synaptic dysregulation in fragile X syndrome and autism spectrum disorders. Front. Mol. Neurosci. 12, 51 (2019).
pubmed: 30899214
pmcid: 6417395
doi: 10.3389/fnmol.2019.00051
Louhivuori, V. et al. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol. Dis. 41, 469–480 (2011).
pubmed: 21047554
doi: 10.1016/j.nbd.2010.10.018
Takei, N. et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769 (2004).
pubmed: 15525761
pmcid: 6730227
doi: 10.1523/JNEUROSCI.1427-04.2004
Uutela, M. et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain. Behav. 11, 513–523 (2012).
pubmed: 22435671
doi: 10.1111/j.1601-183X.2012.00784.x
Biffo, S., Offenhäuser, N., Carter, B. D. & Barde, Y. A. Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development 121, 2461–2470 (1995).
pubmed: 7671810
doi: 10.1242/dev.121.8.2461
Eide, F. F. et al. Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16, 3123–3129 (1996).
pubmed: 8627351
pmcid: 2710135
doi: 10.1523/JNEUROSCI.16-10-03123.1996
Palko, M. E., Coppola, V. & Tessarollo, L. Evidence for a role of truncated TrkC receptor isoforms in mouse development. J. Neurosci. 19, 775–782 (1999).
pubmed: 9880597
pmcid: 6782202
doi: 10.1523/JNEUROSCI.19-02-00775.1999
Dorsey, S. G. et al. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 51, 21–28 (2006).
pubmed: 16815329
doi: 10.1016/j.neuron.2006.06.009
Yacoubian, T. A. & Lo, D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat. Neurosci. 3, 342–349 (2000).
pubmed: 10725923
doi: 10.1038/73911
Carim-Todd, L. et al. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J. Neurosci. 29, 678–685 (2009).
pubmed: 19158294
pmcid: 2719435
doi: 10.1523/JNEUROSCI.5060-08.2009
Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).
pubmed: 21784246
pmcid: 3232425
doi: 10.1016/j.cell.2011.06.013
Chatterjee, M. et al. STEP inhibition reverses behavioral, electrophysiologic, and synaptic abnormalities in Fmr1 KO mice. Neuropharmacology 128, 43–53 (2018).
pubmed: 28943283
doi: 10.1016/j.neuropharm.2017.09.026
Mallozzi, C. et al. The activity of the Striatal-enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A2A receptor. J. Neurochem. 152, 284–298 (2020).
pubmed: 31520531
doi: 10.1111/jnc.14866
Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).
pubmed: 15550950
doi: 10.1038/nrn1556
Kim, C. H., Lee, J., Lee, J. Y. & Roche, K. W. Metabotropic glutamate receptors: phosphorylation and receptor signaling. J. Neurosci. Res. 86, 1–10 (2008).
pubmed: 17663464
doi: 10.1002/jnr.21437
Hagerman, R. et al. Mavoglurant in fragile X syndrome: results of two open-label, extension trials in adults and adolescents. Sci. Rep. 8, 16970 (2018).
pubmed: 30451888
pmcid: 6242849
doi: 10.1038/s41598-018-34978-4
Bagni, C. & Oostra, B. A. Fragile X syndrome: from protein function to therapy. Am. J. Med. Genet. A 161A, 2809–2821 (2013).
pubmed: 24115651
doi: 10.1002/ajmg.a.36241
Kondo, T. & Mizuno, Y., Japanese Istradefylline Study Group. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin. Neuropharmacol. 38, 41–46 (2015).
pubmed: 25768849
doi: 10.1097/WNF.0000000000000073