Adenosine A


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
05 02 2021
Historique:
received: 06 10 2020
accepted: 18 01 2021
revised: 28 12 2020
entrez: 6 2 2021
pubmed: 7 2 2021
medline: 29 6 2021
Statut: epublish

Résumé

In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A

Identifiants

pubmed: 33547274
doi: 10.1038/s41398-021-01238-5
pii: 10.1038/s41398-021-01238-5
pmc: PMC7864914
doi:

Substances chimiques

Fmr1 protein, mouse 0
Receptor, Adenosine A2A 0
Fragile X Mental Retardation Protein 139135-51-6
Adenosine K72T3FS567

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

112

Subventions

Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : FRAXA Research Foundation (FRAXA Research Foundation, Inc.)
ID : 349
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257
Organisme : Fondazione Telethon (Telethon Foundation)
ID : GGP15257

Références

de Vries, B. B., Halley, D. J., Oostra, B. A. & Niermeijer, M. F. The fragile X syndrome. J. Med. Genet. 35, 579–589 (1998).
pubmed: 9678703 pmcid: 1051369 doi: 10.1136/jmg.35.7.579
Jin, P. & Warren, S. T. Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet. 9, 901–908 (2000).
pubmed: 10767313 doi: 10.1093/hmg/9.6.901
Tranfaglia, M. R. The psychiatric presentation of fragile X: evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev. Neurosci. 33, 337–348 (2011).
pubmed: 21893938 doi: 10.1159/000329421
Newman, I., Leader, G., Chen, J. L. & Mannion, A. An analysis of challenging behavior, comorbid psychopathology, and attention-deficit/hyperactivity disorder in fragile X syndrome. Res. Dev. Disabil. 38, 7–17 (2015).
pubmed: 25543996 doi: 10.1016/j.ridd.2014.11.003
Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Prim. 3, 17065 (2017).
pubmed: 28960184 doi: 10.1038/nrdp.2017.65
Salcedo-Arellano, M. J., Dufour, B., McLennan, Y., Martinez-Cerdeno, V. & Hagerman, R. Fragile X syndrome and associated disorders: clinical aspects and pathology. Neurobiol. Dis. 136, 104740 (2020).
pubmed: 31927143 pmcid: 7027994 doi: 10.1016/j.nbd.2020.104740
Oostra, B. A. & Willemsen, R. A fragile balance: FMR1 expression levels. Hum. Mol. Genet. 12(Spec No. 2), R249–R257 (2003).
pubmed: 12952862 doi: 10.1093/hmg/ddg298
Siomi, H., Siomi, M. C., Nussbaum, R. L. & Dreyfuss, G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291–298 (1993).
pubmed: 7688265 doi: 10.1016/0092-8674(93)90420-U
Dictenberg, J. B., Swanger, S. A., Antar, L. N., Singer, R. H. & Bassell, G. J. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell. 14, 926–939 (2008).
pubmed: 18539120 pmcid: 2453222 doi: 10.1016/j.devcel.2008.04.003
Pasciuto, E. & Bagni, C. SnapShot: FMRP mRNA targets and diseases. Cell 158, 1446–1446.e1 (2014).
pubmed: 25215498 doi: 10.1016/j.cell.2014.08.035
Pasciuto, E. & Bagni, C. SnapShot: FMRP interacting proteins. Cell 159, 218–218.e1 (2014).
pubmed: 25259928 doi: 10.1016/j.cell.2014.08.036
Banerjee, A., Ifrim, M. F., Valdez, A. N., Raj, N. & Bassell, G. J. Aberrant RNA translation in fragile X syndrome: from FMRP mechanisms to emerging therapeutic strategies. Brain Res. 1693(Pt. A), 24–36 (2018).
pubmed: 29653083 pmcid: 7377270 doi: 10.1016/j.brainres.2018.04.008
Bagni, C. & Zukin, R. S. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101, 1070–1088 (2019).
pubmed: 30897358 doi: 10.1016/j.neuron.2019.02.041
Shah, S. et al. FMRP control of ribosome translocation promotes chromatin modifications and alternative splicing of neuronal genes linked to autism. Cell Rep. 30, 4459–4472.e6 (2020).
pubmed: 32234480 pmcid: 7179797 doi: 10.1016/j.celrep.2020.02.076
Sung, Y. J., Conti, J., Currie, J. R., Brown, W. T. & Denman, R. B. RNAs that interact with the fragile X syndrome RNA binding protein FMRP. Biochem. Biophys. Res. Commun. 275, 973–980 (2000).
pubmed: 10973830 doi: 10.1006/bbrc.2000.3405
Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 (2005).
pubmed: 15861180 doi: 10.1038/nrn1667
Davis, J. K. & Broadie, K. Multifarious functions of the fragile X mental retardation protein. Trends Genet. 33, 703–714 (2017).
pubmed: 28826631 pmcid: 5610095 doi: 10.1016/j.tig.2017.07.008
Jacquemont, S. et al. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum. Mol. Genet. 27, 2039–2051 (2018).
pubmed: 29590342 pmcid: 5985734 doi: 10.1093/hmg/ddy099
Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).
pubmed: 15219735 doi: 10.1016/j.tins.2004.04.009
Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).
pubmed: 18093519 pmcid: 2199268 doi: 10.1016/j.neuron.2007.12.001
Krueger, D. D. & Bear, M. F. Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu. Rev. Med. 62, 411–429 (2011).
pubmed: 21090964 pmcid: 3100156 doi: 10.1146/annurev-med-061109-134644
Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012).
pubmed: 22500629 doi: 10.1016/j.neuron.2012.03.009 pmcid: 8822597
Jacquemont, S. et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 3, 64ra1 (2011).
pubmed: 21209411 doi: 10.1126/scitranslmed.3001708
Jacquemont, S. et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl.) 231, 1237–1250 (2014).
doi: 10.1007/s00213-013-3289-0
Mullard, A. Fragile X disappointments upset autism ambitions. Nat. Rev. Drug Discov. 14, 151–153 (2015).
pubmed: 25722228 doi: 10.1038/nrd4555
Berry-Kravis, E. M. et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat. Rev. Drug Discov. 17, 280–299 (2017).
pubmed: 29217836 pmcid: 6904225 doi: 10.1038/nrd.2017.221
Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2015).
doi: 10.1016/j.neuropharm.2005.06.004
Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527–552 (2001).
pubmed: 11734617
Klinger, M., Freissmuth, M. & Nanoff, C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal. 14, 99–108 (2002).
pubmed: 11781133 doi: 10.1016/S0898-6568(01)00235-2
Chen, J. F. et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog. Neurobiol. 83, 310–331 (2007).
pubmed: 18023959 doi: 10.1016/j.pneurobio.2007.09.002
Popoli, P. et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22, 1967–1975 (2002).
pubmed: 11880527 pmcid: 6758877 doi: 10.1523/JNEUROSCI.22-05-01967.2002
Popoli, P. et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog. Neurobiol. 81, 331–348 (2007).
pubmed: 17303312 doi: 10.1016/j.pneurobio.2006.12.005
Popoli, P., Blum, D., Domenici, M. R., Burnouf, S. & Chern, Y. A critical evaluation of adenosine A2A receptors as potentially “druggable” targets in Huntington’s disease. Curr. Pharm. Des. 14, 1500–1511 (2008).
pubmed: 18537673 doi: 10.2174/138161208784480117
Cunha, R. A. Neuroprotection by adenosine in the brain: from A(1) receptor activation to A(2A) receptor blockade. Purinergic Signal. 1, 111–134 (2005).
pubmed: 18404497 pmcid: 2096528 doi: 10.1007/s11302-005-0649-1
Domenici, M. R. et al. Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. J. Neurochem. 90, 1276–1279 (2004).
pubmed: 15312183 doi: 10.1111/j.1471-4159.2004.02607.x
Tebano, M. T. et al. Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J. Neurochem. 95, 1188–1200 (2005).
pubmed: 16271052 doi: 10.1111/j.1471-4159.2005.03455.x
Osterweil, E. K., Krueger, D. D., Reinhold, K. & Bear, M. F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).
pubmed: 21084617 pmcid: 3400430 doi: 10.1523/JNEUROSCI.3888-10.2010
Sharma, A. et al. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30, 694–702 (2010).
pubmed: 20071534 pmcid: 3665010 doi: 10.1523/JNEUROSCI.3696-09.2010
Tebano, M. T. et al. Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J. Neurochem. 104, 279–286 (2008).
pubmed: 18005343
Chiodi, V. et al. Cocaine induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP. Neuropsychopharmacology 39, 569–578 (2014).
pubmed: 23989619 doi: 10.1038/npp.2013.229
Castrén, M. L. & Castrén, E. BDNF in fragile X syndrome. Neuropharmacology 76(Pt C), 729–736 (2014).
pubmed: 23727436 doi: 10.1016/j.neuropharm.2013.05.018
Goebel-Goody, S. M. et al. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol. Rev. 64, 65–87 (2012).
pubmed: 22090472 pmcid: 3250079 doi: 10.1124/pr.110.003053
The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).
Orr, A. G. et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol. Dis. 110, 29–36 (2018).
pubmed: 29100987 doi: 10.1016/j.nbd.2017.10.014
Anderson, W. W. & Collingridge, G. L. The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 71–83 (2001).
pubmed: 11459620 doi: 10.1016/S0165-0270(01)00374-0
Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).
pubmed: 12032354 doi: 10.1073/pnas.122205699 pmcid: 124340
Irwin, S. A. et al. Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146 (2002).
pubmed: 12210340 doi: 10.1002/ajmg.10500
Leuner, B., Falduto, J. & Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23, 659–665 (2003).
pubmed: 12533625 pmcid: 2740640 doi: 10.1523/JNEUROSCI.23-02-00659.2003
Paylor, R. et al. Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn. Mem. 5, 302–316 (1998).
pubmed: 10454356 pmcid: 311270 doi: 10.1101/lm.5.4.302
Dawson, G. R., Flint, J. & Wilkinson, L. S. Testing the genetics of behavior in mice. Science 285, 2068 (1999).
pubmed: 10523201
Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 3, 118–133 (2014).
pubmed: 25606362 pmcid: 4298642 doi: 10.5582/irdr.2014.01024
Ferrante, A. et al. The adenosine A(2A) receptor agonist T1-11 ameliorates neurovisceral symptoms and extends the lifespan of a mouse model of Niemann-Pick type C disease. Neurobiol. Dis. 110, 1–11 (2018).
pubmed: 29079454 doi: 10.1016/j.nbd.2017.10.013
Mallozzi, C. et al. Phosphorylation and nitration of tyrosine residues affect functional properties of Synaptophysin and Dynamin I, two proteins involved in exo-endocytosis of synaptic vesicles. Biochim. Biophys. Acta 1833, 110–121 (2013).
pubmed: 23103755 doi: 10.1016/j.bbamcr.2012.10.022
Ferrari, F. et al. The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 34, 343–354 (2007).
pubmed: 17254795 doi: 10.1016/j.mcn.2006.11.015
Godfraind, J. M. et al. Long-term potentiation in the hippocampus of fragile X knockout mice. Am. J. Med. Genet. 64, 246–251 (1996).
pubmed: 8844057 doi: 10.1002/(SICI)1096-8628(19960809)64:2<246::AID-AJMG2>3.0.CO;2-S
Paradee, W. et al. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94, 185–192 (1999).
pubmed: 10613508 doi: 10.1016/S0306-4522(99)00285-7
Hoeffer, C. A. et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 11, 332–341 (2012).
pubmed: 22268788 pmcid: 3319643 doi: 10.1111/j.1601-183X.2012.00768.x
Huber, K. M., Klann, E., Costa-Mattioli, M. & Zukin, R. S. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 35, 13836–13842 (2015).
pubmed: 26468183 pmcid: 4604222 doi: 10.1523/JNEUROSCI.2656-15.2015
Popoli, P. et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25, 505–513 (2001).
pubmed: 11557164 doi: 10.1016/S0893-133X(01)00256-1
Ferré, S. et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl Acad. Sci. USA 99, 11940–11945 (2002).
pubmed: 12189203 doi: 10.1073/pnas.172393799 pmcid: 129373
Díaz-Cabiale, Z. et al. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci. Lett. 324, 154–158 (2002).
pubmed: 11988350 doi: 10.1016/S0304-3940(02)00179-9
Coccurello, R., Breysse, N. & Amalric, M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29, 1451–1461 (2004).
pubmed: 15039773 doi: 10.1038/sj.npp.1300444
Rodrigues, R. J., Alfaro, T. M., Rebola, N., Oliveira, C. R. & Cunha, R. A. Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem. 92, 433–441 (2005).
pubmed: 15659214 doi: 10.1111/j.1471-4159.2004.02887.x
Goh, J. J. & Manahan-Vaughan, D. Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cereb. Cortex. 23, 1118–1125 (2013).
pubmed: 22510536 doi: 10.1093/cercor/bhs089
Chen, Y. et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc. Natl Acad. Sci. USA 107, 13123–13128 (2010).
pubmed: 20615973 doi: 10.1073/pnas.1003825107 pmcid: 2919915
Weber, J. D. et al. Voice of people with fragile X syndrome and their families: reports from a survey on treatment priorities. Brain Sci. 9, 18 (2019).
pmcid: 6406416 doi: 10.3390/brainsci9020018
Li, W. et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol. Dis. 79, 70–80 (2015).
pubmed: 25892655 doi: 10.1016/j.nbd.2015.03.030
Tyebji, S. et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington’s disease. Neurobiol. Dis. 74, 41–57 (2015).
pubmed: 25449908 doi: 10.1016/j.nbd.2014.11.004
Dall’Igna, O. P. et al. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol. 203, 241–245 (2007).
pubmed: 17007839 doi: 10.1016/j.expneurol.2006.08.008
Canas, P. M. et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci. 29, 14741–14751 (2009).
pubmed: 19940169 pmcid: 6665997 doi: 10.1523/JNEUROSCI.3728-09.2009
Ronesi, J. A. & Huber, K. M. Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J. Neurosci. 28, 543–547 (2008).
pubmed: 18184796 pmcid: 6670508 doi: 10.1523/JNEUROSCI.5019-07.2008
Kumari, D. et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum. Mutat. 35, 1485–1494 (2014).
pubmed: 25224527 pmcid: 4287266 doi: 10.1002/humu.22699
Telias, M. Molecular mechanisms of synaptic dysregulation in fragile X syndrome and autism spectrum disorders. Front. Mol. Neurosci. 12, 51 (2019).
pubmed: 30899214 pmcid: 6417395 doi: 10.3389/fnmol.2019.00051
Louhivuori, V. et al. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol. Dis. 41, 469–480 (2011).
pubmed: 21047554 doi: 10.1016/j.nbd.2010.10.018
Takei, N. et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769 (2004).
pubmed: 15525761 pmcid: 6730227 doi: 10.1523/JNEUROSCI.1427-04.2004
Uutela, M. et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain. Behav. 11, 513–523 (2012).
pubmed: 22435671 doi: 10.1111/j.1601-183X.2012.00784.x
Biffo, S., Offenhäuser, N., Carter, B. D. & Barde, Y. A. Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development 121, 2461–2470 (1995).
pubmed: 7671810 doi: 10.1242/dev.121.8.2461
Eide, F. F. et al. Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16, 3123–3129 (1996).
pubmed: 8627351 pmcid: 2710135 doi: 10.1523/JNEUROSCI.16-10-03123.1996
Palko, M. E., Coppola, V. & Tessarollo, L. Evidence for a role of truncated TrkC receptor isoforms in mouse development. J. Neurosci. 19, 775–782 (1999).
pubmed: 9880597 pmcid: 6782202 doi: 10.1523/JNEUROSCI.19-02-00775.1999
Dorsey, S. G. et al. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 51, 21–28 (2006).
pubmed: 16815329 doi: 10.1016/j.neuron.2006.06.009
Yacoubian, T. A. & Lo, D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat. Neurosci. 3, 342–349 (2000).
pubmed: 10725923 doi: 10.1038/73911
Carim-Todd, L. et al. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J. Neurosci. 29, 678–685 (2009).
pubmed: 19158294 pmcid: 2719435 doi: 10.1523/JNEUROSCI.5060-08.2009
Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).
pubmed: 21784246 pmcid: 3232425 doi: 10.1016/j.cell.2011.06.013
Chatterjee, M. et al. STEP inhibition reverses behavioral, electrophysiologic, and synaptic abnormalities in Fmr1 KO mice. Neuropharmacology 128, 43–53 (2018).
pubmed: 28943283 doi: 10.1016/j.neuropharm.2017.09.026
Mallozzi, C. et al. The activity of the Striatal-enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A2A receptor. J. Neurochem. 152, 284–298 (2020).
pubmed: 31520531 doi: 10.1111/jnc.14866
Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).
pubmed: 15550950 doi: 10.1038/nrn1556
Kim, C. H., Lee, J., Lee, J. Y. & Roche, K. W. Metabotropic glutamate receptors: phosphorylation and receptor signaling. J. Neurosci. Res. 86, 1–10 (2008).
pubmed: 17663464 doi: 10.1002/jnr.21437
Hagerman, R. et al. Mavoglurant in fragile X syndrome: results of two open-label, extension trials in adults and adolescents. Sci. Rep. 8, 16970 (2018).
pubmed: 30451888 pmcid: 6242849 doi: 10.1038/s41598-018-34978-4
Bagni, C. & Oostra, B. A. Fragile X syndrome: from protein function to therapy. Am. J. Med. Genet. A 161A, 2809–2821 (2013).
pubmed: 24115651 doi: 10.1002/ajmg.a.36241
Kondo, T. & Mizuno, Y., Japanese Istradefylline Study Group. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin. Neuropharmacol. 38, 41–46 (2015).
pubmed: 25768849 doi: 10.1097/WNF.0000000000000073

Auteurs

Antonella Ferrante (A)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Zaira Boussadia (Z)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Antonella Borreca (A)

Institute of Neuroscience (IN)-CNR, Milan, Italy.
Humanitas Clinical and Research Center - IRCCS, Rozzano, (MI), Italy.

Cinzia Mallozzi (C)

Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.

Giorgia Pedini (G)

Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.

Laura Pacini (L)

Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
Saint Camillus International University of Health and Medical Sciences, Rome, Italy.

Antonella Pezzola (A)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Monica Armida (M)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Fabrizio Vincenzi (F)

Department of Morphology, Surgery and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy.

Katia Varani (K)

Department of Morphology, Surgery and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy.

Claudia Bagni (C)

Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.

Patrizia Popoli (P)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Alberto Martire (A)

National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy. alberto.martire@iss.it.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH