Sensing soluble uric acid by Naip1-Nlrp3 platform.
Animals
Fatty Acids
/ metabolism
Humans
Inflammasomes
/ genetics
Interleukin-1beta
/ metabolism
Macaca mulatta
Macrophages
/ drug effects
Mice, Inbred C57BL
NLR Family, Pyrin Domain-Containing 3 Protein
/ genetics
Neuronal Apoptosis-Inhibitory Protein
/ genetics
Protein Binding
THP-1 Cells
Uric Acid
/ metabolism
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
05 02 2021
05 02 2021
Historique:
received:
17
11
2020
accepted:
15
01
2021
revised:
11
01
2021
entrez:
6
2
2021
pubmed:
7
2
2021
medline:
14
9
2021
Statut:
epublish
Résumé
Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1β (IL-1β) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1β expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.
Identifiants
pubmed: 33547278
doi: 10.1038/s41419-021-03445-w
pii: 10.1038/s41419-021-03445-w
pmc: PMC7864962
doi:
Substances chimiques
Fatty Acids
0
IL1B protein, human
0
Inflammasomes
0
Interleukin-1beta
0
NAIP protein, human
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
NLRP3 protein, human
0
Naip1 protein, mouse
0
Neuronal Apoptosis-Inhibitory Protein
0
Nlrp3 protein, mouse
0
Uric Acid
268B43MJ25
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
158Références
Land, W. G. How evolution tells us to induce allotolerance. Exp. Clin. Transplant. 13, 46–54 (2015).
pubmed: 25894127
Bottomly, K. & Janeway, C. A. Jr. Antigen presentation by B cells. Nature 337, 24 (1989).
pubmed: 2562905
doi: 10.1038/337024a0
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).
pubmed: 2700931
doi: 10.1101/SQB.1989.054.01.003
Janeway, C. A. Jr. The priming of helper T cells. Semin. Immunol. 1, 13–20 (1989).
pubmed: 15630955
Burnet, F. M. The immunological significance of the thymus: an extension of the clonal selection theory of immunity. Australas. Ann. Med. 11, 79–91 (1962).
pubmed: 13874950
doi: 10.1111/imj.1962.11.2.79
Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–5 (2002).
pubmed: 11951032
doi: 10.1126/science.1071059
Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).
pubmed: 9840976
doi: 10.1006/smim.1998.0143
So, A. & Thorens, B. Uric acid transport and disease. J. Clin. Investig. 120, 1791–9 (2010).
pubmed: 20516647
doi: 10.1172/JCI42344
pmcid: 2877959
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–21 (2003).
pubmed: 14520412
doi: 10.1038/nature01991
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–41 (2006).
pubmed: 16407889
doi: 10.1038/nature04516
Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–31 (2002).
pubmed: 11955556
doi: 10.1016/S0140-6736(02)08220-X
Di Giovine, F. S., Malawista, S. E., Nuki, G. & Duff, G. W. Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J. Immunol. 138, 3213–8 (1987).
pubmed: 3033070
doi: 10.4049/jimmunol.138.10.3213
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–26 (2002).
pubmed: 12191486
doi: 10.1016/S1097-2765(02)00599-3
Jones, J. D., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, 6316 (2016).
doi: 10.1126/science.aaf6395
Mondragón-Palomino, M., Stam, R., John-Arputharaj, A. & Dresselhaus, T. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms. BMC Evol. Biol. 17, 255 (2017).
pubmed: 29246101
pmcid: 5731061
doi: 10.1186/s12862-017-1099-4
Braga, T. T., Forni, M. F., Correa-Costa, M., Ramos, R. N., Barbuto, J. A. & Branco, P. et al. Soluble uric acid activates the NLRP3 inflammasome. Sci. Rep. 7, 39884 (2017).
pubmed: 28084303
pmcid: 5233987
doi: 10.1038/srep39884
Kingsbury, S. R., Conaghan, P. G. & McDermott, M. F. The role of the NLRP3 inflammasome in gout. J. Inflamm. Res. 4, 39–49 (2011).
pubmed: 22096368
pmcid: 3218743
Martillo, M. A., Nazzal, L. & Crittenden, D. B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 16, 400 (2014).
pubmed: 24357445
pmcid: 3975080
doi: 10.1007/s11926-013-0400-9
Kratzer, J. T., Lanaspa, M. A., Murphy, M. N., Cicerchi, C., Graves, C. L. & Tipton, P. A. et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc. Natl Acad. Sci. USA 111, 3763–8 (2014).
pubmed: 24550457
doi: 10.1073/pnas.1320393111
pmcid: 3956161
Kono, H., Chen, C. J., Ontiveros, F. & Rock, K. L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Investig. 120, 1939–49 (2010).
pubmed: 20501947
doi: 10.1172/JCI40124
pmcid: 2877935
Cicerchi, C., Li, N., Kratzer, J., Garcia, G., Roncal-Jimenez, C. A. & Tanabe, K. et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 28, 3339–50 (2014).
pubmed: 24755741
pmcid: 4101654
doi: 10.1096/fj.13-243634
Hafner, S. & Weitzman, J. Of mice and men-NAIP homologues face Legionella pneumophila. Microbes Infect. / Inst. Pasteur 14, 1119–22 (2012).
doi: 10.1016/j.micinf.2012.07.010
Diez, E., Lee, S. H., Gauthier, S., Yaraghi, Z., Tremblay, M. & Vidal, S. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).
pubmed: 12483212
doi: 10.1038/ng1065
Wright, E. K., Goodart, S. A., Growney, J. D., Hadinoto, V., Endrizzi, M. G. & Long, E. M. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).
pubmed: 12526741
doi: 10.1016/S0960-9822(02)01359-3
Miao, E. A., Mao, D. P., Yudkovsky, N., Bonneau, R., Lorang, C. G. & Warren, S. E. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–80 (2010).
pubmed: 20133635
doi: 10.1073/pnas.0913087107
pmcid: 2840275
Rayamajhi, M., Zak, D. E., Chavarria-Smith, J., Vance, R. E. & Miao, E. A. Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J. Immunol. 191, 3986–9 (2013).
pubmed: 24043898
doi: 10.4049/jimmunol.1301549
Zhao, Y., Yang, J., Shi, J., Gong, Y. N., Lu, Q. & Xu, H. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).
pubmed: 21918512
doi: 10.1038/nature10510
Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).
pubmed: 16552444
pmcid: 1401497
doi: 10.1371/journal.ppat.0020018
Katagiri, N., Shobuike, T., Chang, B., Kukita, A. & Miyamoto, H. The human apoptosis inhibitor NAIP induces pyroptosis in macrophages infected with Legionella pneumophila. Microbes Infect. 14, 1123–32 (2012).
pubmed: 22504023
doi: 10.1016/j.micinf.2012.03.006
Zamboni, D. S., Kobayashi, K. S., Kohlsdorf, T., Ogura, Y., Long, E. M. & Vance, R. E. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318–25 (2006).
pubmed: 16444259
doi: 10.1038/ni1305
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H. & Rock, K. L. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–56 (2008).
pubmed: 18604214
pmcid: 2834784
doi: 10.1038/ni.1631
Schmid-Burgk, J. L., Höning, K., Ebert, T. S. & Hornung, V. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism. Nat. Commun. 7, 12338 (2016).
pubmed: 27465542
pmcid: 4974478
doi: 10.1038/ncomms12338
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–20 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–60 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. & Salzberg, S. L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–5 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L. & Leek, J. T. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33, 243–6 (2015).
pubmed: 25748911
pmcid: 4792117
doi: 10.1038/nbt.3172
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–67 (2016).
pubmed: 27560171
pmcid: 5032908
doi: 10.1038/nprot.2016.095
Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–93 (2008).
pubmed: 18229953
doi: 10.1021/cr068107d
Souto, D. E., Faria, A. R., de Andrade, H. M. & Kubota, L. T. Using QCM and SPR for the kinetic evaluation of the binding between a new recombinant chimeric protein and specific antibodies of the visceral leishmaniasis. Curr. Protein Pept. Sci. 16, 782–90 (2015).
pubmed: 25961398
doi: 10.2174/1389203716666150505230416
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
pubmed: 8254673
doi: 10.1006/jmbi.1993.1626
Hu, Z., Yan, C., Liu, P., Huang, Z., Ma, R. & Zhang, C. et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172–5 (2013).
pubmed: 23765277
doi: 10.1126/science.1236381
Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–87 (2002).
pubmed: 12079393
doi: 10.1016/S0022-2836(02)00442-4
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M. & Meng, E. C. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–12 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J. & Felberg, L. E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–28 (2018).
pubmed: 28836357
doi: 10.1002/pro.3280
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).
pubmed: 15215472
pmcid: 441519
doi: 10.1093/nar/gkh381
Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277 (2011).
pubmed: 21624888
pmcid: 3125772
doi: 10.1093/nar/gkr366
Patschan, D., Patschan, S., Gobe, G. G., Chintala, S. & Goligorsky, M. S. Uric acid heralds ischemic tissue injury to mobilize endothelial progenitor cells. J. Am. Soc. Nephrol. 18, 1516–24 (2007).
pubmed: 17409313
doi: 10.1681/ASN.2006070759
Coll, R. C., Robertson, A., Butler, M., Cooper, M. & O’Neill, L. A. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE 6, e29539 (2011).
pubmed: 22216309
pmcid: 3245271
doi: 10.1371/journal.pone.0029539
Lanaspa, M. A., Sanchez-Lozada, L. G., Choi, Y. J., Cicerchi, C., Kanbay, M. & Roncal-Jimenez, C. A. et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287, 40732–44 (2012).
pubmed: 23035112
pmcid: 3504786
doi: 10.1074/jbc.M112.399899
Kuznetsov, A. V., Margreiter, R., Amberger, A., Saks, V. & Grimm, M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim. Biophys. Acta 1813, 1144–52 (2011).
pubmed: 21406203
doi: 10.1016/j.bbamcr.2011.03.002
Sborov, D. W., Haverkos, B. M. & Harris, P. J. Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opin. Investig. Drugs 24, 79–94 (2015).
pubmed: 25224845
doi: 10.1517/13543784.2015.960077
O’Neill, L. Immunometabolism and the land of milk and honey. Nat. Rev. Immunol. 17, 217 (2017).
pubmed: 28287105
doi: 10.1038/nri.2017.22
Moon, J. S., Lee, S., Park, M. A., Siempos, II., Haslip, M. & Lee, P. J. et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Investig. 125, 665–80 (2015).
pubmed: 25574840
doi: 10.1172/JCI78253
pmcid: 4319445
Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M. & Roche, H. M. Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues. Annu. Rev. Nutr. 37, 77–102 (2017).
pubmed: 28826373
doi: 10.1146/annurev-nutr-071816-064836
Xing, J. H., Li, R., Gao, Y. Q., Wang, M. Y., Liu, Y. Z. & Hong, J. et al. NLRP3 inflammasome mediate palmitate-induced endothelial dysfunction. Life Sci. 239, 116882 (2019).
pubmed: 31705915
doi: 10.1016/j.lfs.2019.116882
Huynh, K., Pernes, G., Mellett, N. A., Meikle, P. J., Murphy, A. J. & Lancaster, G. I. Lipidomic profiling of murine macrophages treated with fatty acids of varying chain length and saturation status. Metabolites 8, 2 (2018).
doi: 10.3390/metabo8020029
Zhang, L., Chen, S., Ruan, J., Wu, J., Tong, A. B. & Yin, Q. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–9 (2015).
pubmed: 26449474
pmcid: 4640189
doi: 10.1126/science.aac5789
Hauenstein, A. V., Zhang, L. & Wu, H. The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Curr. Opin. Struct. Biol. 31, 75–83 (2015).
pubmed: 25881155
pmcid: 4476925
doi: 10.1016/j.sbi.2015.03.014
Nichols, R. D., von Moltke, J. & Vance, R. E. NAIP/NLRC4 inflammasome activation in MRP8. Nat. Commun. 8, 2209 (2017).
pubmed: 29263322
pmcid: 5738432
doi: 10.1038/s41467-017-02266-w
Dalbeth, N., Choi, H. K., Joosten, L. A. B., Khanna, P. P., Matsuo, H. & Perez-Ruiz, F. et al. Gout. Nat. Rev. Dis. Prim. 5, 69 (2019).
pubmed: 31558729
doi: 10.1038/s41572-019-0115-y
Qu, Y., Misaghi, S., Newton, K., Maltzman, A., Izrael-Tomasevic, A. & Arnott, D. et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J. Exp. Med. 213, 877–85 (2016).
pubmed: 27139490
pmcid: 4886354
doi: 10.1084/jem.20132234
Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–14 (2017).
pubmed: 28163301
doi: 10.1038/nri.2016.151
Byeon, H. E., Jeon, J. Y., Kim, H. J., Kim, D. J., Lee, K. W. & Kang, Y. et al. MicroRNA-132 negatively regulates palmitate-induced NLRP3 inflammasome activation through FOXO3 down-regulation in THP-1 cells. Nutrients 9, 12 (2017).
doi: 10.3390/nu9121370
Wang, L., Chen, Y., Li, X., Zhang, Y. & Gulbins, E. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget 7, 73229–41 (2016).
pubmed: 27689324
pmcid: 5341975
doi: 10.18632/oncotarget.12302
Terlizzi, M., Colarusso, C., Popolo, A., Pinto, A. & Sorrentino, R. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice. Oncotarget 7, 58181–92 (2016).
pubmed: 27528423
pmcid: 5295423
doi: 10.18632/oncotarget.11276
Tapia, E., Cristóbal, M., García-Arroyo, F. E., Soto, V., Monroy-Sánchez, F. & Pacheco, U. et al. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am. J. Physiol. Ren. Physiol. 304, F727–36 (2013).
doi: 10.1152/ajprenal.00485.2012
Soltani, Z., Rasheed, K., Kapusta, D. R. & Reisin, E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr. Hypertens. Rep. 15, 175–81 (2013).
pubmed: 23588856
pmcid: 3736857
doi: 10.1007/s11906-013-0344-5
Kanbay, M., Afsar, B., Siriopol, D., Unal, H. U., Karaman, M. & Saglam, M. et al. Relevance of uric acid and asymmetric dimethylarginine for modeling cardiovascular risk prediction in chronic kidney disease patients. Int. Urol. Nephrol. 48, 1129–36 (2016).
pubmed: 27007614
doi: 10.1007/s11255-016-1271-6
Smith, K. A., Pearson, C. B., Hachey, A. M., Xia, D. L. & Wachtman, L. M. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp. Med. 62, 303–10 (2012).
pubmed: 23043784
pmcid: 3415373
Friedman, E. M., Reyes, T. M. & Coe, C. L. Context-dependent behavioral effects of interleukin-1 in the rhesus monkey (Macaca mulatta). Psychoneuroendocrinology 21, 455–68 (1996).
pubmed: 8888368
doi: 10.1016/0306-4530(96)00010-8
Burm, S. M., Peferoen, L. A., Zuiderwijk-Sick, E. A., Haanstra, K. G., ‘t Hart, B. A. & van der Valk, P. et al. Expression of IL-1β in rhesus EAE and MS lesions is mainly induced in the CNS itself. J. Neuroinflamm. 13, 138 (2016).
doi: 10.1186/s12974-016-0605-8
So, A. K. & Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 13, 639–47 (2017).
pubmed: 28959043
doi: 10.1038/nrrheum.2017.155
Alper, A. B., Chen, W., Yau, L., Srinivasan, S. R., Berenson, G. S. & Hamm, L. L. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 45, 34–8 (2005).
pubmed: 15569853
doi: 10.1161/01.HYP.0000150783.79172.bb
Tang, W., Hong, Y., Province, M. A., Rich, S. S., Hopkins, P. N. & Arnett, D. K. et al. Familial clustering for features of the metabolic syndrome: the National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study. Diabetes Care 29, 631–6 (2006).
pubmed: 16505518
doi: 10.2337/diacare.29.03.06.dc05-0679
Perticone, M., Tripepi, G., Maio, R., Cimellaro, A., Addesi, D. & Baggetta, R. et al. Risk reclassification ability of uric acid for cardiovascular outcomes in essential hypertension. Int. J. Cardiol. 243, 473–8 (2017).
pubmed: 28528984
doi: 10.1016/j.ijcard.2017.05.051
Lee, J. E., Kim, Y. G., Choi, Y. H., Huh, W., Kim, D. J. & Oh, H. Y. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension 47, 962–7 (2006).
pubmed: 16520402
doi: 10.1161/01.HYP.0000210550.97398.c2
Prattichizzo, F., De Nigris, V., Spiga, R., Mancuso, E., La Sala, L. & Antonicelli, R. et al. Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res. Rev. 41, 1–17 (2018).
pubmed: 29081381
doi: 10.1016/j.arr.2017.10.003
Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–85 (2017).
doi: 10.1038/nature21363
pubmed: 28179656
Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: an inflammatory connection. Immunity 51, 794–811 (2019).
pubmed: 31747581
doi: 10.1016/j.immuni.2019.09.020