Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages.
Bone Marrow Cells
/ cytology
Bone Morphogenetic Proteins
/ genetics
Cell Differentiation
Cell Proliferation
Cells, Cultured
Cellular Senescence
/ genetics
GATA6 Transcription Factor
/ antagonists & inhibitors
Histone Deacetylase 2
/ genetics
Humans
Mesenchymal Stem Cells
/ cytology
RNA Interference
RNA, Small Interfering
/ metabolism
SOXC Transcription Factors
/ antagonists & inhibitors
Signal Transduction
/ genetics
Wnt Proteins
/ genetics
BMP
Cell senescence
GATA6
Mesenchymal stem cells
SOX11
Wnt
Journal
Cell biochemistry and biophysics
ISSN: 1559-0283
Titre abrégé: Cell Biochem Biophys
Pays: United States
ID NLM: 9701934
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
accepted:
18
01
2021
pubmed:
10
2
2021
medline:
20
8
2021
entrez:
9
2
2021
Statut:
ppublish
Résumé
Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.
Identifiants
pubmed: 33559812
doi: 10.1007/s12013-021-00969-y
pii: 10.1007/s12013-021-00969-y
doi:
Substances chimiques
Bone Morphogenetic Proteins
0
GATA6 Transcription Factor
0
GATA6 protein, human
0
RNA, Small Interfering
0
SOX11 protein, human
0
SOXC Transcription Factors
0
Wnt Proteins
0
HDAC2 protein, human
EC 3.5.1.98
Histone Deacetylase 2
EC 3.5.1.98
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
321-336Références
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells (in Eng). Science, 284, 143–147. https://doi.org/10.1126/science.284.5411.143
doi: 10.1126/science.284.5411.143
pubmed: 10102814
pmcid: 10102814
Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century (in Eng). Trends in Molecular Medicine, 7, 259–264
doi: 10.1016/S1471-4914(01)02016-0
Hashimoto, Y., Nishida, Y., Takahashi, S., Nakamura, H., Mera, H., et al. (2019). Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial (in Eng). Regenerative Therapy, 11, 106–113. https://doi.org/10.1016/j.reth.2019.06.002
doi: 10.1016/j.reth.2019.06.002
pubmed: 31312692
pmcid: 6610227
Kawaguchi, H., Hayashi, H., Mizuno, N., Fujita, T., Hasegawa, N., Shiba, H., Nakamura, S., Hino, T., Yoshino, H., Kurihara, H., Tanaka, H., Kimura, A., Tsuji, K., & Kato, Y. (2005). [Cell transplantation for periodontal diseases. A novel periodontal tissue regenerative therapy using bone marrow mesenchymal stem cells] (in Jpn). Clinical Calcium, 15, 99–104. CliCa11971202
pubmed: 15995304
Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., & Brenner, M. K. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta (in Eng). Nature Medicine, 5, 309–313. https://doi.org/10.1038/6529
doi: 10.1038/6529
pubmed: 10086387
Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., & Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction (in Eng). Nature Medicine, 12, 459–465. https://doi.org/10.1038/nm1391
doi: 10.1038/nm1391
pubmed: 16582917
Kawaguchi, H., Hirachi, A., Hasegawa, N., Iwata, T., Hamaguchi, H., Shiba, H., Takata, T., Kato, Y., & Kurihara, H. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells (in Eng). Journal of Periodontology, 75, 1281–1287. https://doi.org/10.1902/jop.2004.75.9.1281
doi: 10.1902/jop.2004.75.9.1281
pubmed: 15515346
Hasegawa, N., Kawaguchi, H., Hirachi, A., Takeda, K., Mizuno, N., Nishimura, M., Koike, C., Tsuji, K., Iba, H., Kato, Y., & Kurihara, H. (2006). Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects (in Eng). Journal of Periodontology, 77, 1003–1007. https://doi.org/10.1902/jop.2006.050341
doi: 10.1902/jop.2006.050341
pubmed: 16734575
Trubiani, O., Orsini, G., Caputi, S., & Piatelli, A. (2006). Adult mesenchymal stem cells in dental research: A new approach for tissue engineering (in Eng). International Journal of Immunopathology and Pharmacology, 19, 451–460. https://doi.org/10.1177/039463200601900301
doi: 10.1177/039463200601900301
pubmed: 17026831
Yamada, Y., Ueda, M., Hibi, H., & Baba, S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report (in Eng). The International Journal of Periodontics & Restorative Dentistry, 26, 363–369
Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains (in Eng). Experimental Cell Research, 37, 614–636. https://doi.org/10.1016/0014-4827(65)90211-9
doi: 10.1016/0014-4827(65)90211-9
pubmed: 14315085
Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., & Ho, A. D. (2008). Replicative senescence of mesenchymal stem cells: A continuous and organized process (in Eng). PLoS ONE, 3, e2213. https://doi.org/10.1371/journal.pone.0002213
doi: 10.1371/journal.pone.0002213
pubmed: 18493317
pmcid: 2374903
Singh, S., Dhaliwal, N., Crawford, R., & Xiao, Y. (2009). Cellular senescence and longevity of osteophyte-derived mesenchymal stem cells compared to patient-matched bone marrow stromal cells (in Eng). Journal of Cellular Biochemistry, 108, 839–850. https://doi.org/10.1002/jcb.22312
doi: 10.1002/jcb.22312
pubmed: 19693768
Zhang, D. Y., Pan, Y., Zhang, C., Yan, B. X., Yu, S. S., Wu, D. L., Shi, M. M., Shi, K., Cai, X. X., Zhou, S. S., Wang, J. B., Pan, J. P., & Zhang, L. H. (2013). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production (in Eng). Molecular and Cellular Biochemistry, 374, 13–20. https://doi.org/10.1007/s11010-012-1498-1
doi: 10.1007/s11010-012-1498-1
pubmed: 23124852
Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C. B., & Lansdorp, P. M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 91, 9857–9860. https://doi.org/10.1073/pnas.91.21.9857
Cheng, H., Qiu, L., Ma, J., Zhang, H., Cheng, M., Li, W., Zhao, X., & Liu, K. (2011). Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts (in Eng). Molecular Biology Reports, 38, 5161–5168. https://doi.org/10.1007/s11033-010-0665-2
doi: 10.1007/s11033-010-0665-2
pubmed: 21188535
Dovey, O. M., Foster, C. T., & Cowley, S. M. (2010). Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 107, 8242–8247 https://doi.org/10.1073/pnas.1000478107
Gharibi, B., & Hughes, F. J. (2012). Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells (in Eng). Stem Cells Translational Medicine, 1, 771–782. https://doi.org/10.5966/sctm.2010-0031
doi: 10.5966/sctm.2010-0031
pubmed: 23197689
pmcid: 3659663
Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E., Takagishi, K., & Kato, Y. (2001). Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF (in Eng). Biochemical and Biophysical Research Communications, 288, 413–419. https://doi.org/10.1006/bbrc.2001.5777
doi: 10.1006/bbrc.2001.5777
pubmed: 11606058
Coutu, D. L., Francois, M., & Galipeau, J. (2011). Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells (in Eng). Blood, 117, 6801–6812. https://doi.org/10.1182/blood-2010-12-321539
doi: 10.1182/blood-2010-12-321539
pubmed: 21527526
Mareschi, K., Ferrero, I., Rustichelli, D., Aschero, S., Gammaitoni, L., Aglietta, M., Madon, E., & Fagioli, F. (2006). Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow (in Eng). Journal of Cellular Biochemistry, 97, 744–754. https://doi.org/10.1002/jcb.20681
doi: 10.1002/jcb.20681
pubmed: 16229018
Flores-Torales, E., Orozco-Barocio, A., Gonzalez-Ramella, O. R., Carrasco-Yalan, A., Gazarian, K., & Cuneo-Pareto, S. (2010). The CD271 expression could be alone for establisher phenotypic marker in bone marrow derived mesenchymal stem cells (in Eng). Folia Histochemica et Cytobiologica, 48, 682–686. https://doi.org/10.2478/v10042-010-0063-6
doi: 10.2478/v10042-010-0063-6
pubmed: 21478116
Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P. G., Riminucci, M., & Bianco, P. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment (in Eng). Cell, 131, 324–336. https://doi.org/10.1016/j.cell.2007.08.025
doi: 10.1016/j.cell.2007.08.025
pubmed: 17956733
Ishii, M., Koike, C., Igarashi, A., Yamanaka, K., Pan, H., Higashi, Y., Kawaguchi, H., Sugiyama, M., Kamata, N., Iwata, T., Matsubara, T., Nakamura, K., Kurihara, H., Tsuji, K., & Kato, Y. (2005). Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts (in Eng). Biochemical and Biophysical Research Communications, 332, 297–303. https://doi.org/10.1016/j.bbrc.2005.04.118
doi: 10.1016/j.bbrc.2005.04.118
pubmed: 15896330
Igarashi, A., Segoshi, K., Sakai, Y., Pan, H., Kanawa, M., Higashi, Y., Sugiyama, M., Nakamura, K., Kurihara, H., Yamaguchi, S., Tsuji, K., Kawamoto, T., & Kato, Y. (2007). Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: Effects of passage number and donor age (in Eng). Tissue Engineering, 13, 2405–2417. https://doi.org/10.1089/ten.2006.0340
doi: 10.1089/ten.2006.0340
pubmed: 17596118
Kubo, H., Shimizu, M., Taya, Y., Kawamoto, T., Michida, M., Kaneko, E., Igarashi, A., Nishimura, M., Segoshi, K., Shimazu, Y., Tsuji, K., Aoba, T., & Kato, Y. (2009). Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry (in Eng). Genes to Cells, 14, 407–424. https://doi.org/10.1111/j.1365-2443.2009.01281.x
doi: 10.1111/j.1365-2443.2009.01281.x
pubmed: 19228201
Zhang, D. Y., Wang, H. J., & Tan, Y. Z. (2011). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway (in Eng). PLoS ONE, 6, e21397. https://doi.org/10.1371/journal.pone.0021397
doi: 10.1371/journal.pone.0021397
pubmed: 21712954
pmcid: 3119703
Fan, J., An, X., Yang, Y., Xu, H., Fan, L., Deng, L., Li, T., Weng, X., Zhang, J., & Chunhua Zhao, R. (2018). MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the Wnt/beta-catenin pathway (in Eng). Aging and Disease, 9, 1103–1121. https://doi.org/10.14336/ad.2018.1110
doi: 10.14336/ad.2018.1110
pubmed: 30574422
pmcid: 6284756
Xia, W., Zhuang, L., Deng, X., & Hou, M. (2017). Long noncoding RNAp21 modulates cellular senescence via the Wnt/betacatenin signaling pathway in mesenchymal stem cells (in Eng). Molecular Medicine Reports, 16, 7039–7047. https://doi.org/10.3892/mmr.2017.7430
doi: 10.3892/mmr.2017.7430
pubmed: 28901439
Fujimoto, M., Mano, Y., Anai, M., Yamamoto, S., Fukuyo, M., Aburatani, H., & Kaneda, A. (2016). Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence (in Eng). World Journal of Biological Chemistry, 7, 188–205. https://doi.org/10.4331/wjbc.v7.i1.188
doi: 10.4331/wjbc.v7.i1.188
pubmed: 26981207
pmcid: 4768123
Hayashi, Y., Hsiao, E. C., Sami, S., Lancero, M., Schlieve, C. R., Nguyen, T., Yano, K., Nagahashi, A., Ikeya, M., Matsumoto, Y., Nishimura, K., Fukuda, A., Hisatake, K., Tomoda, K., Asaka, I., Toguchida, J., Conklin, B. R., & Yamanaka, S. (2016). BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 113, 13057–13062. https://doi.org/10.1073/pnas.1603668113
Lepletier, A., Hun, M. L., Hammett, M. V., Wong, K., Naeem, H., Hedger, M., Loveland, K., & Chidgey, A. P. (2019). Interplay between follistatin, activin A, and BMP4 signaling regulates postnatal thymic epithelial progenitor cell differentiation during aging (in Eng). Cell Reports, 27, 3887–3901.e4. https://doi.org/10.1016/j.celrep.2019.05.045
doi: 10.1016/j.celrep.2019.05.045
pubmed: 31242421
Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., Cortina, C., Calon, A., Abuli, A., Castells, A., Castellvi-Bel, S., Nacht, A. S., Sancho, E., Stephan-Otto Attolini, C., Vicent, G. P., Real, F. X., & Batlle, E. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression (in Eng). Nature Cell Biology, 16, 695–707. https://doi.org/10.1038/ncb2992
doi: 10.1038/ncb2992
pubmed: 24952462
Xu, L., Huang, S., Hou, Y., Liu, Y., Ni, M., Meng, F., Wang, K., Rui, Y., Jiang, X., & Li, G. (2015). Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs (in Eng). FASEB Journal, 29, 1143–152. https://doi.org/10.1096/fj.14-254169
doi: 10.1096/fj.14-254169
pubmed: 25466891
Iwata, T., Kawamoto, T., Sasabe, E., Miyazaki, K., Fujimoto, K., Noshiro, M., Kurihara, H., & Kato, Y. (2006). Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells (in Eng). European Journal of Cell Biology, 85, 423–431. https://doi.org/10.1016/j.ejcb.2005.12.007
doi: 10.1016/j.ejcb.2005.12.007
pubmed: 16487626
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (in Eng). Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
doi: 10.1016/0022-1759(83)90303-4
pubmed: 6606682
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 92, 9363–9367. https://doi.org/10.1073/pnas.92.20.9363
Maddox, J. R., Liao, X., Li, F., & Niyibizi, C. (2009). Effects of culturing on the stability of the putative murine adipose derived stem cells markers (in Eng). The Open Stem Cell Journal, 1, 54–61. https://doi.org/10.2174/1876893800901010054
doi: 10.2174/1876893800901010054
pubmed: 19946473
pmcid: 2783658
Gronthos, S., & Zannettino, A. C. (2008). A method to isolate and purify human bone marrow stromal stem cells (in Eng). Methods in Molecular Biology, 449, 45–57. https://doi.org/10.1007/978-1-60327-169-1_3
doi: 10.1007/978-1-60327-169-1_3
pubmed: 18370082
Bakopoulou, A., Apatzidou, D., Aggelidou, E., Gousopoulou, E., Leyhausen, G., Volk, J., Kritis, A., Koidis, P., & Geurtsen, W. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties (in Eng). Stem Cell Research & Therapy, 8, 247. https://doi.org/10.1186/s13287-017-0705-0
doi: 10.1186/s13287-017-0705-0
Lee, R. H., Seo, M. J., Pulin, A. A., Gregory, C. A., Ylostalo, J., & Prockop, D. J. (2009). The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice (in Eng). Blood, 113, 816–826. https://doi.org/10.1182/blood-2007-12-128702
doi: 10.1182/blood-2007-12-128702
pubmed: 18818395
pmcid: 2630267
Lv, F. J., Tuan, R. S., Cheung, K. M., & Leung, V. Y. (2014). Concise review: The surface markers and identity of human mesenchymal stem cells (in Eng). Stem Cells, 32, 1408–1419. https://doi.org/10.1002/stem.1681
doi: 10.1002/stem.1681
pubmed: 24578244
Zhang, Y., Goss, A. M., Cohen, E. D., Kadzik, R., Lepore, J. J., Muthukumaraswamy, K., Yang, J., DeMayo, F. J., Whitsett, J. A., Parmacek, M. S., & Morrisey, E. E. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration (in Eng). Nature Genetics, 40, 862–870. https://doi.org/10.1038/ng.157
doi: 10.1038/ng.157
pubmed: 18536717
pmcid: 2562713
Larson, B. L., Ylostalo, J., Lee, R. H., Gregory, C., & Prockop, D. J. (2010). Sox11 is expressed in early progenitor human multipotent stromal cells and decreases with extensive expansion of the cells (in Eng). Tissue Engineering Part A, 16, 3385–3394. https://doi.org/10.1089/ten.tea.2010.0085
doi: 10.1089/ten.tea.2010.0085
pubmed: 20626275
pmcid: 2965191
Kaneda-Ikeda, E., Iwata, T., Mizuno, N., Nagahara, T., Kajiya, M., Takeda, K., Hirata, R., Ishida, S., Yoshioka, M., Fujita, T., Kawaguchi, H., & Kurihara, H. (2020). Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells (in Eng). Differentiation; Research in Biological Diversity, 112, 47–57. https://doi.org/10.1016/j.diff.2020.01.001
doi: 10.1016/j.diff.2020.01.001
pubmed: 31951879
Satija, N. K., Gurudutta, G. U., Sharma, S., Afrin, F., Gupta, P., Verma, Y. K., Singh, V. K., & Tripathi, R. P. (2007). Mesenchymal stem cells: Molecular targets for tissue engineering (in Eng). Stem Cells and Development, 16, 7–23. https://doi.org/10.1089/scd.2006.9998
doi: 10.1089/scd.2006.9998
pubmed: 17348802
Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., Shibuya, H., & Matsumoto, K. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF (in Eng). Nature, 399, 798–802. https://doi.org/10.1038/21674
doi: 10.1038/21674
pubmed: 10391247
Fromigue, O., Marie, P. J., & Lomri, A. (1998). Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation (in Eng). Journal of Cellular Biochemistry, 68, 411–426
doi: 10.1002/(SICI)1097-4644(19980315)68:4<411::AID-JCB2>3.0.CO;2-T
Cheng, C. C., Chang, S. J., Chueh, Y. N., Huang, T. S., Huang, P. H., Cheng, S. M., Tsai, T. N., Chen, J. W., & Wang, H. W. (2013). Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses (in Eng). BMC Genomics, 14, 182. https://doi.org/10.1186/1471-2164-14-182
doi: 10.1186/1471-2164-14-182
pubmed: 23496821
pmcid: 3652793
Gits, C. M., van Kuijk, P. F., Jonkers, M. B., Boersma, A. W., van Ijcken, W. F., Wozniak, A., Sciot, R., Rutkowski, P., Schoffski, P., Taguchi, T., Mathijssen, R. H., Verweij, J., Sleijfer, S., Debiec-Rychter, M., & Wiemer, E. A. (2013). MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours (in Eng). British Journal of Cancer, 109, 1625–1635. https://doi.org/10.1038/bjc.2013.483
doi: 10.1038/bjc.2013.483
pubmed: 23969726
pmcid: 3776993
Rong, L., Liu, J., Qi, Y., Graham, A. M., Parmacek, M. S., & Li, S. (2012). GATA-6 promotes cell survival by up-regulating BMP-2 expression during embryonic stem cell differentiation (in Eng). Molecular Biology of the Cell, 23, 3754–3763. https://doi.org/10.1091/mbc.E12-04-0313
doi: 10.1091/mbc.E12-04-0313
pubmed: 22855527
pmcid: 3442421
Liang, D., Zhen, L., Yuan, T., Huang, J., Deng, F., Wuyahan, Zhang, H., Pan, L., Liu, Y., The, E., Yu, Z., Zhu, W., Zhang, Y., Li, L., Peng, L., Li, J., & Chen, Y. H. (2014). miR-10a regulates proliferation of human cardiomyocyte progenitor cells by targeting GATA6 (in Eng). PLoS ONE, 9, e103097 https://doi.org/10.1371/journal.pone.0103097
doi: 10.1371/journal.pone.0103097
pubmed: 25068583
pmcid: 4113387
Shirvani, S., Xiang, F., Koibuchi, N., & Chin, M. T. (2006). CHF1/Hey2 suppresses SM-MHC promoter activity through an interaction with GATA-6 (in Eng). Biochemical and Biophysical Research Communications, 339, 151–156. https://doi.org/10.1016/j.bbrc.2005.10.190
doi: 10.1016/j.bbrc.2005.10.190
pubmed: 16293227
Kormish, J. D., Sinner, D., & Zorn, A. M. (2010). Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease (in Eng). Developmental Dynamics, 239, 56–68. https://doi.org/10.1002/dvdy.22046
doi: 10.1002/dvdy.22046
pubmed: 19655378
pmcid: 3269784
Li, X., & Bai, X. Z. (2008). [NF-kappaB modulates activation of the BMP-2 gene by trichostatin A] (in Rus). Molekuliarnaia biologiia, 42, 990–906
Swiss, V. A., Nguyen, T., Dugas, J., Ibrahim, A., Barres, B., Androulakis, I. P., & Casaccia, P. (2011). Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation (in Eng). PLoS ONE, 6, e18088. https://doi.org/10.1371/journal.pone.0018088
doi: 10.1371/journal.pone.0018088
pubmed: 21490970
pmcid: 3072388
Iwata, T., Mizuno, N., Nagahara, T., Kaneda-Ikeda, E., Kajiya, M., Kitagawa, M., Takeda, K., Yoshioka, M., Yagi, R., Takata, T., & Kurihara, H. (2020). Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells (in Eng). Journal of Periodontal Research. https://doi.org/10.1111/jre.12794
Kaneda-Ikeda, E., Iwata, T., Mizuno, N., Nagahara, T., Kajiya, M., Ouhara, K., Yoshioka, M., Ishida, S., Kawaguchi, H., & Kurihara, H. (2020). Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts (in Eng). Journal of Bone and Mineral Metabolism, 38, 442–455. https://doi.org/10.1007/s00774-019-01080-2
doi: 10.1007/s00774-019-01080-2
pubmed: 31970478