Assessment of the impacts of microbial plant protection products containing Bacillus thuringiensis on the survival of adults and larvae of the honeybee (Apis mellifera).

Bacillus thuringiensis Exposure Honeybees Microbial pest-controlling products Oral toxicity Pollen feeding

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 26 10 2020
accepted: 08 01 2021
pubmed: 11 2 2021
medline: 29 6 2021
entrez: 10 2 2021
Statut: ppublish

Résumé

This study was aimed at evaluating the effect of a microbial pest-controlling product (MPCP) with the active substance Bacillus thuringiensis ssp. aizawai (strain: ABTS-1857) on adults and larvae of honeybees. To determine the contamination levels of Bt spores in different matrices, a colony-feeding study under semi-field conditions was performed. Furthermore, two chronic adult trials and a chronic larval study were conducted under laboratory conditions to test the effects of different concentrations of the plant protection product (PPP) on the development and mortality. Possible modifications of the chronic oral toxicity test were assessed by additional pollen feeding. Our results showed that Bt spores were detected in all matrices over the entire test duration in different concentrations, decreasing over time. The survival of adult bees and larvae was negatively affected in laboratory conditions after a chronic exposure to the MPCP depending on the tested concentrations. Moreover, the earliest sign of bee mortality, resulting from exposure to ABTS-1857, was recorded only after 96 h at the highest tested concentration. Pollen feeding to adults significantly increased the survival of the treated bees. In conclusion, the PPP with the Bt strain ABTS-1857 showed an effect on the mortality of adults and larvae under laboratory conditions. Further studies with Bt-based PPPs under realistic field conditions are necessary to evaluate the potential risk of those MPCPs on honeybees.

Identifiants

pubmed: 33566293
doi: 10.1007/s11356-021-12446-3
pii: 10.1007/s11356-021-12446-3
pmc: PMC8222042
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

29773-29780

Références

Addison JA (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil: a review. Can J For Res 23(11):2329–2342. https://doi.org/10.1139/x93-287
doi: 10.1139/x93-287
Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effect on honeybee immunocompetence. Biol Lett 6:562–565. https://doi.org/10.1098/rsbl.2009.0986
doi: 10.1098/rsbl.2009.0986
Bailey J, Scott-Dupree C, Harris R, Tolman J, Harris B (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie 36(4):623–633. https://doi.org/10.1051/apido:2005048
Bravo A, Gill SS, Soberòn M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435. https://doi.org/10.1016/j.toxicon.2006.11.022
doi: 10.1016/j.toxicon.2006.11.022
Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431
Brighenti DM, Carvalho CF, Carvalho GA, Brighenti CRG, Carvalho SM (2007) Bioatividade do Bacillus thuringiensis var. kurstaki (Berliner, 1915) para adultos de Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Ciência e Agrotecnologia, Lavras 31(2):279–289. https://doi.org/10.1590/S1413-70542007000200003
doi: 10.1590/S1413-70542007000200003
D’Urso V, Mazzeo G, Vaccalluzzo V, Sabella G, Bucchieri F, Viscuro R, Vitale DGM (2017) Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis based biopesticide. Apidologie, Paris 48(1):5162. https://doi.org/10.5433/1679-0359.2018v39n1p329
doi: 10.5433/1679-0359.2018v39n1p329
Davidson G, Phelps K, Sunderland KD, Pell JK, Ball BV, Shaw KW, Chandler D (2003) Study of temperature growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J Appl Microbiol 94:816–825. https://doi.org/10.1046/j.1365-2672.2003.01871.x
doi: 10.1046/j.1365-2672.2003.01871.x
Davis AR (1989) Study of insecticide poisoning of honey bee brood. Bee World 70:163–174. https://doi.org/10.1080/0005772x.1989.11099013
doi: 10.1080/0005772x.1989.11099013
DeGrandi-Hoffman G, Chen Y (2015) Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci. 10:170–176. https://doi.org/10.1016/j.cois.2015.05.007
doi: 10.1016/j.cois.2015.05.007
DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J Insect Physiol 56(9):1184–1191. https://doi.org/10.1016/j.jinsphys.2010.03.017
Dietrich S, Scholz-Döbelin H, Reintges T, Pelz J, Jehle JA, Keßler J (2014) Investigations on the residues of XenTari® (Bacillus thuringiensis subspec. aizawai) on greenhouse tomatoes. Journal für Kulturpflanzen. 66(9):312–318. https://doi.org/10.5073/JFK.2014.09.04
doi: 10.5073/JFK.2014.09.04
Duan JJ, Marvier M, Huesing J, Dievly G, Huang ZY (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3(1):e1415. https://doi.org/10.1371/journal.pone.0001415
doi: 10.1371/journal.pone.0001415
Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cornman RS et al (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 7(2):e02164-15. https://doi.org/10.1128/mBio.02164-15
doi: 10.1128/mBio.02164-15
Feitelson JS (1993) The Bacillus thuringiensis family tree. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, Inc., New York, pp 63–67
Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis: insects and beyond. Bio/Technology 10:271–275. https://doi.org/10.1038/nbt0392-271
doi: 10.1038/nbt0392-271
Haddad ML, Polanczyk RA, Alves SB, Garcia MO (2005) Field persistence of Bacillus thuringiensis on maize leaves (Zea mays L.). Braz J Microbiol 36:309–314. https://doi.org/10.1590/S1517-83822005000400001
doi: 10.1590/S1517-83822005000400001
Ignoffo CM, Garcia C (1978) UV-photoinactivation of cells and spores of Bacillus thuringiensis and effects of peroxidase on inactivation. Environ Entomol 7(2):270–272
doi: 10.1093/ee/7.2.270
Kassambara A, Kosinski M, Biecek P (2019) survminer: Drawing Survival Curves using ‘ggplot2’. Avaliable at: http://www.sthda.com/english/rpkgs/survminer/
Köhl J, Booij K, Kolnaar R, Ravensberg WJ (2019) Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl 64:469–487. https://doi.org/10.1007/s10526-019-09964-y
doi: 10.1007/s10526-019-09964-y
Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–348. https://doi.org/10.1038/nrmicro.2016.43
doi: 10.1038/nrmicro.2016.43
Li SY, Fitzpatrick S, Isman MB (1995) Effect of temperature on toxicity of Bacillus thuringiensis to the oliquebanded leafroller (Lepidoptera: Tortricidae). Can Entomol 127(2):271–273. https://doi.org/10.4039/Ent127271-2
Libardoni G, de Gouvea A, Costa-Maia FM, Lozano ER, de Freitas PF, Colombo FC, Raulino F, Maciel RMA, Potrich M (2018) Effect of different Bacillus thuringiensis strains on the longevity of Africanized honey bee. Semina: Ciências Agrárias, Londrina 39(1):329–338. https://doi.org/10.5433/1679-0359.2018v39n1p329
doi: 10.5433/1679-0359.2018v39n1p329
Malone LA, Burgess EPJ, Stefanovic D (1999) Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption. Apidologie. 30:465–473
doi: 10.1051/apido:19990601
Mommaerts V, Jans K, Smagghe G (2010) Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumble bees (Bombus terrestris). Pest Manag Sci. 66:520–525. https://doi.org/10.1002/ps.1902
doi: 10.1002/ps.1902
Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393
doi: 10.1371/journal.pone.0036393
Motta EV, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honey bees. Proc Natl Acad Sci 115(41):10305–10310
doi: 10.1073/pnas.1803880115
Ogunjimi AA, Gbenle GO, Akinrimisi EO (2000) PCR-based identification of Bacillus thuringiensis isolated from soil samples in Nigeria. Zeitschrift für Naturforschung C 55(11–12):987–990
doi: 10.1515/znc-2000-11-1223
Organisation for Economic Co-operation and Development (OECD) (2016) Guidance document on honey bee larval toxicity test following repeated exposure. Series on Testing & Assessment No. 239. ENV/JM/MONO (2016) 34. https://one.oecd.org/document/ENV/JM/MONO(2016)34/en/pdf
Organisation for Economic Co-operation and Development (OECD) (2017) OECD Guideline for the Testing of Chemicals. Honey bee (Apis mellifera), chronic oral toxicity test (10-day feeding). OECD/OCDE 245. Adopted 9 October 2017. https://www.oecd-ilibrary.org/docserver/9789264284081-en.pdf?expires=1586028842&id=id&accname=guest&checksum=F78F26502CCEE0CBABA58FF0475031F4
Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev. 37:3–22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
doi: 10.1111/j.1574-6976.2012.00341.x
Pedersen JC, Damgaard PH, Eilenberg J, Hansen BM (1995) Dispersal of Bacillus thuringiensis var. kurstaki in an experimental cabbage field. Can J Microbiol. 41:118–125
doi: 10.1139/m95-016
Pinnock DE, Brand RJ, Milstead JE (1971) Field persistence of Bacillus thuingiensis spores. J Invert Pathol 18(3):405. https://doi.org/10.1590/S1517-83822005000400001
doi: 10.1590/S1517-83822005000400001
Potrich M, da Silva RT, Maia F, Lozano ER, Rossi RM, Colombo FC, Tedesco FG, Gouvea AD (2018) Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Revista Brasileira de Entomologia 62(1):23–28. https://doi.org/10.1016/j.rbe.2017.12.002
R Core Team (2019) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria
Renzi MT, Amichot M, Pauron D, Tchamitchian S, Brunet JL, Kretzschmar A, Maini S, Belzunces LP (2016) Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol Environ Saf 127:205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028
doi: 10.1016/j.ecoenv.2016.01.028
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DG (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806
doi: 10.1128/MMBR.62.3.775-806.1998
Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol 12 p. https://doi.org/10.1155/2014/135675
Soni J, Thakur M (2011) Effect of biopathogens on honey bees. Pest Technology. Glob Sci Books 5(1):86–90
Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience. 37:395–399. https://doi.org/10.2307/1310562
doi: 10.2307/1310562
Vandenberg JD, Shimanuki H (1986) Two commercial preparations of the β exotoxin of Bacillus thuringiensis influence the mortality of caged adult honey bees, Apis mellifera (Hymenoptera: Apidae). Environ Entomol 15(1):166–169. https://doi.org/10.1093/ee/15.1.166
doi: 10.1093/ee/15.1.166
Vandenberg JD, Shimanuki H (1990) Viability of Bacillus thuringiensis and its efficacy for larvae of the greater wax moth (Lepidoptera: Pyralidae) following storage of treated combs. J Econ Entomol 83:760–765
doi: 10.1093/jee/83.3.760
Winston ML (1987) The biology of the honey bee. Harvard University Press

Auteurs

Charlotte Steinigeweg (C)

Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany.
Institute for Bee Protection, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany.

Abdulrahim T Alkassab (AT)

Institute for Bee Protection, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany. abdulrahim.alkassab@julius-kuehn.de.

Hannes Beims (H)

Institute for Apiculture, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Celle, Germany.

Jakob H Eckert (JH)

Institute for Bee Protection, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany.

Dania Richter (D)

Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany.

Jens Pistorius (J)

Institute for Bee Protection, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH