Elucidation of Diverse Physico-Chemical Parameters in Mammalian Small Heat Shock Proteins: A Comprehensive Classification and Structural and Functional Exploration Using In Silico Approach.
Classification
Evolutionary significance
Mammalian sHSPs
Multiple sequence alignment
Mutational analysis
Protein domain analysis
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
28
10
2020
accepted:
07
01
2021
pubmed:
12
2
2021
medline:
18
8
2021
entrez:
11
2
2021
Statut:
ppublish
Résumé
Small heat shock proteins (sHSPs), often known as molecular chaperones, are most prevalent in nature. Under certain stress-induced conditions, these sHSPs act as an ATP-independent variation and thus prevent the inactivation of various non-native substrate proteins and their aggregation. They also assist other ATP-dependent chaperones in the refolding of these substrates. In the case of prokaryotes and lower eukaryotes, the chaperone functions of sHSPs can bind a wide range of cellular proteins but preferentially protect translation-related proteins and metabolic enzymes. Eukaryotes usually encode a larger number of sHSPs than those of prokaryotes. The chaperone functions of mammalian sHSPs are regulated by phosphorylation in cells and also by temperature. Their sHSPs have different sub-cellular compartments and cell/tissue specificity. The substrate proteins of mammalian sHSPs or eukaryotic sHSPs accordingly reflect their multi-cellular complexity. The sHSPs of animals play roles in different physiological processes as cell differentiation, apoptosis, and longevity. In this work, the characterization, location, tissue specificity, and functional diversity of sHSPs from seven different mammalian species with special emphasis on humans have been studied. Through this extensive work, a novel and significant attempt have been made to classify them based on their omnipresence, tissue specificity, localization, secondary structure, probable mutations, and evolutionary significance.
Identifiants
pubmed: 33570730
doi: 10.1007/s12010-021-03497-w
pii: 10.1007/s12010-021-03497-w
doi:
Substances chimiques
Heat-Shock Proteins, Small
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1836-1852Subventions
Organisme : Department of Biotechnology , Ministry of Science and Technology
ID : BT/BI/25/001/2006
Références
Heirbaut, M., Beelen, S., Strelkov, S. V., & Weeks, S. D. (2014). Dissecting the functional role of the N-terminal domain of the human small heat shock protein HSPB6. PLoS One, 9(8), e105892. https://doi.org/10.1371/journal.pone.0105892 .
doi: 10.1371/journal.pone.0105892
pubmed: 25157403
pmcid: 4144951
Ferns, G., Shams, S., & Shafi, S. (2006). Heat shock protein 27: its potential role in vascular disease. International Journal of Experimental Pathology, 87(4), 253–274. https://doi.org/10.1111/j.1365-2613.2006.00484.x .
doi: 10.1111/j.1365-2613.2006.00484.x
pubmed: 16875491
pmcid: 2517372
Mogk, A., & Bukau, B. (2017). Role of sHSPs in organizing cytosolic protein aggregation and disaggregation. Cell Stress & Chaperones, 22(4), 493–502. https://doi.org/10.1007/s12192-017-0762-4 .
doi: 10.1007/s12192-017-0762-4
Sugiyama, Y., Suzuki, A., Kishikawa, M., Akutsu, R., Hirose, T., & Waye, M. M. (2000). Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. The Journal of Biological Chemistry, 275(2), 1095–1104. https://doi.org/10.1074/jbc.275.2.1095 .
doi: 10.1074/jbc.275.2.1095
pubmed: 10625651
Yoshida, K., Aki, T., Harada, K., Shama, K. M., Kamoda, Y., Suzuki, A., & Ohno, S. (1999). Translocation of HSP27 and MKBP in ischemic heart. Cell Structure and Function, 24(4), 181–185. https://doi.org/10.1247/csf.24.181 .
doi: 10.1247/csf.24.181
pubmed: 10532352
Mymrikov, E., Seit-Nebi, A., & Gusev, N. (2011). Large potentials of small heat shock proteins. Physiological Reviews, 91(4), 1123–1159. https://doi.org/10.1152/physrev.00023 .
doi: 10.1152/physrev.00023
pubmed: 22013208
Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., & Buchner, J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 24(10), 3633–3642. https://doi.org/10.1096/fj.10-156992 .
doi: 10.1096/fj.10-156992
Taylor, R. P., & Benjamin, I. J. (2005). Small heat shock proteins: a new classification scheme in mammals. Journal of Molecular and Cellular Cardiology, 38(3), 433–444. https://doi.org/10.1016/j.yjmcc.2004.12.014 .
doi: 10.1016/j.yjmcc.2004.12.014
pubmed: 15733903
Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circulation Research, 83(2), 117–132. https://doi.org/10.1161/01.res.83.2.117 .
doi: 10.1161/01.res.83.2.117
pubmed: 9686751
Lam, W. Y., Wing, S. K., Tsui, P. T., Law, Luk, S. C., Fung, K. P., & Lee, C. Y. (1996). Isolation and characterization of a human heart cDNA encoding a new member of the small heat shock protein family—HSPL27. Biochimica et Biophysica Acta, 1314(1-2), 120–124. https://doi.org/10.1016/s0167-4889(96)00121-8 .
doi: 10.1016/s0167-4889(96)00121-8
pubmed: 8972725
The UniProt Consortium. (2019). UniProt: the universal protein knowledgebase. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049 .
doi: 10.1093/nar/gky1049
Itaya, H., Oshita, K., Arakawa, K., & Tomita, M. (2013). GEMBASSY: an EMBOSS associated software package for comprehensive genome analyses. Source Code for Biology and Medicine, 8(1), 17. https://doi.org/10.1186/1751-0473-8-17 .
doi: 10.1186/1751-0473-8-17
pubmed: 23987304
pmcid: 3847652
Simossis, V. A., & Heringa, J. (2005). PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Research, 33(Web Server issue), W289–W294. https://doi.org/10.1093/nar/gki390 .
doi: 10.1093/nar/gki390
pubmed: 15980472
pmcid: 1160151
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673 .
doi: 10.1093/nar/22.22.4673
pubmed: 7984417
pmcid: 308517
El-Gebali, S., Mistry, J., Bateman, A., Eddy, R. S., Luciani, A., Potter, C. S., Qureshi, M., Richardson, J. L., Salazar, A. G., Smart, A., Sonnhammer, L. L. E., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, E. C. S., & Finn, D. R. (2019). The Pfam protein families database in 2019.Nucleic. Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995 .
doi: 10.1093/nar/gky995
Narberhaus, F. (2002). Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews: MMBR, 66(1), 64–93. https://doi.org/10.1128/mmbr.66.1.64-93.2002 .
doi: 10.1128/mmbr.66.1.64-93.2002
pubmed: 11875128
pmcid: 120782
Kouza, M., Faraggi, E., Kolinski, A., & Kloczkowski, A. (2017). The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Methods in Molecular Biology (Clifton, N.J.), 1484, 7–24. https://doi.org/10.1007/978-1-4939-6406-2_2 .
doi: 10.1007/978-1-4939-6406-2_2
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., & Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), W465–W469. https://doi.org/10.1093/nar/gkn180 .
doi: 10.1093/nar/gkn180
pubmed: 18424797
pmcid: 2447785
Islamovic, E., Duncan, A., Bers, D. M., Gerthoffer, W. T., & Mestril, R. (2007). Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. Journal of Molecular and Cellular Cardiology, 42(4), 862–869. https://doi.org/10.1016/j.yjmcc.2007.01.002 .
doi: 10.1016/j.yjmcc.2007.01.002
pubmed: 17292395
Boelens, W. C., Van Boekel, M. A., & De Jong, W. W. (1998). HspB3, the most deviating of the six known human small heat shock protein. Biochimica et Biophysica Acta, 1388(2), 513–516. https://doi.org/10.1016/s0167-4838(98)00215-5 .
doi: 10.1016/s0167-4838(98)00215-5
pubmed: 9858786
Sha, L., Hou, N., Zhang, M., Ma, Q., & Shi, C. (2019). High α B-crystallin and p53 co-expression is associated with poor prognosis in ovarian cancer. Bioscience Reports, 39(6), BSR20182407. https://doi.org/10.1042/BSR20182407 .
doi: 10.1042/BSR20182407
pubmed: 31152111
pmcid: 6579977
Iwaki, A., Nagano, T., Nakagawa, M., Iwaki, T., & Fukumaki, Y. (1997). Identification and characterization of the gene encoding a new member of the alpha-crystallin/small HSP family, closely linked to the alpha-B crystallin gene in a head-to-head manner. Genomics, 45(2), 386–394. https://doi.org/10.1006/geno.1997.4956 .
doi: 10.1006/geno.1997.4956
pubmed: 9344664
Arrigo, A. P., Simon, S., Gibert, B., Kretz-Remy, C., Nivon, M., Czekalla, A., Guillet, D., Moulin, M., Diaz-Latoud, C., & Vicart, P. (2007). Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Letters, 581(19), 3665–3674. https://doi.org/10.1016/j.febslet.2007.04.033 .
doi: 10.1016/j.febslet.2007.04.033
pubmed: 17467701
Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu-i, N., Yoshida, M., & Nonaka, I. (1998). A novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. The Journal of Cell Biology, 140(5), 1113–1124. https://doi.org/10.1083/jcb.140.5.1113 .
doi: 10.1083/jcb.140.5.1113
pubmed: 9490724
pmcid: 2132705
McGuffin, L., Bryson, K., & Jones, D. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404 .
doi: 10.1093/bioinformatics/16.4.404
Gastmann, O., Burfeind, P., Gunther, E., Hameister, H., Szpirer, C., & Hoyer-Fender, S. (1993). Sequence, expression, and chromosomal assignment of a human sperm outer dense fiber gene. Molecular Reproduction and Development, 36(4), 407–418. https://doi.org/10.1002/mrd.1080360402 .
doi: 10.1002/mrd.1080360402
pubmed: 8305202
Waters, E. R., & Rioflorido, I. (2007). Evolutionary analysis of the small heat shock proteins in five complete algal genomes. Journal of Molecular Evolution, 65(2), 162–174. https://doi.org/10.1007/s00239-006-0223-7 .
doi: 10.1007/s00239-006-0223-7
pubmed: 17684698
Fan, G. C., Chu, G., Mitton, B., Song, Q., Yuan, Q., & Kranias, E. G. (2004). Small heat-shock protein Hsp20 phosphorylation inhibits β-agonist-induced cardiac apoptosis. Circulation Research, 94(11), 1474–1482. https://doi.org/10.1161/01.res.0000129179.66631.00 .
doi: 10.1161/01.res.0000129179.66631.00
pubmed: 15105294
Basha, E., Jones, C., Wysocki, V., & Vierling, E. (2010). Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. The Journal of Biological Chemistry, 285(15), 11489–11497. https://doi.org/10.1074/jbc.M109.074088 .
doi: 10.1074/jbc.M109.074088
pubmed: 20145254
pmcid: 2857027
Siddique, M., Gernhard, S., Koskull-Doring, P., Vierling, E., & Scharf, K. D. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress & Chaperones, 13(2), 183–197. https://doi.org/10.1007/s12192-008-0032-6 .
doi: 10.1007/s12192-008-0032-6
van Heijst, J. W., Niessen, H. W., Musters, R. J., van Hinsbergh, V. W., Hoekman, K., & Schalkwijk, C. G. (2006). Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis. Cancer Letters, 241(2), 309–319. https://doi.org/10.1016/j.canlet.2005.10.042 .
doi: 10.1016/j.canlet.2005.10.042
pubmed: 16337338
Nicolaou, P., Knöll, R., Haghighi, K., Guo-Chang, F., Dorn, G. W., Hasenfu, G., & Kranias, E. G. (2008). Human mutation in the anti-apoptotic heat shock protein 20 abrogates its cardioprotective effects. The Journal of Biological Chemistry, 283(48), 33465–33471. https://doi.org/10.1074/jbc.M802307200 .
doi: 10.1074/jbc.M802307200
pubmed: 18790732
pmcid: 2586274
Sigrist, C. J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A., & Bucher, P. (2002). PROSITE: a documented database using patterns and profiles as motif descriptors. Briefings in Bioinformatics, 3(3), 265–274. https://doi.org/10.1093/bib/3.3.265 .
doi: 10.1093/bib/3.3.265
pubmed: 12230035
Chu, G., Egnaczyk, G. F., Zhao, W., Jo, S. H., Fan, G. C., Maggio, J. E., Xiao, R. P., & Kranias, E. G. (2004). Phosphoproteome analysis of cardiomyocytes subjected to beta-adrenergic stimulation: identification and characterization of a cardiac heat shock protein p20. Circulation Research, 94(2), 184–193. https://doi.org/10.1161/01.RES.0000107198.90218.21 .
doi: 10.1161/01.RES.0000107198.90218.21
pubmed: 14615292
Pandey, B., Kaur, A., Gupta, O. P., Sharma, I., & Sharma, P. (2000). Identification of HSP20 gene family in wheat and barley and their differential expression profiling under heat stress. Applied Biochemistry and Biotechnology, 175(5), 2427–2446. https://doi.org/10.1007/s12010-014-1420-2 .
doi: 10.1007/s12010-014-1420-2
Zhu, Y. H., Ma, T. M., & Wang, X. (2005). Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts. Acta Pharmacologica Sinica, 26(10), 1193–1200. https://doi.org/10.1111/j.1745-7254.2005.00139.x .
doi: 10.1111/j.1745-7254.2005.00139.x
pubmed: 16174435
Kappé, G., Franck, E., Verschuure, P., Boelens, W. C., Leunissen, J. A., & de Jong, W. W. (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress & Chaperones, 8(1), 53–61. https://doi.org/10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2 .
doi: 10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2