CellWalker integrates single-cell and bulk data to resolve regulatory elements across cell types in complex tissues.
Journal
Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660
Informations de publication
Date de publication:
14 02 2021
14 02 2021
Historique:
received:
03
08
2020
accepted:
25
01
2021
entrez:
15
2
2021
pubmed:
16
2
2021
medline:
13
1
2022
Statut:
epublish
Résumé
Single-cell and bulk genomics assays have complementary strengths and weaknesses, and alone neither strategy can fully capture regulatory elements across the diversity of cells in complex tissues. We present CellWalker, a method that integrates single-cell open chromatin (scATAC-seq) data with gene expression (RNA-seq) and other data types using a network model that simultaneously improves cell labeling in noisy scATAC-seq and annotates cell type-specific regulatory elements in bulk data. We demonstrate CellWalker's robustness to sparse annotations and noise using simulations and combined RNA-seq and ATAC-seq in individual cells. We then apply CellWalker to the developing brain. We identify cells transitioning between transcriptional states, resolve regulatory elements to cell types, and observe that autism and other neurological traits can be mapped to specific cell types through their regulatory elements.
Identifiants
pubmed: 33583425
doi: 10.1186/s13059-021-02279-1
pii: 10.1186/s13059-021-02279-1
pmc: PMC7883575
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
61Subventions
Organisme : NIMH NIH HHS
ID : R01 MH109907
Pays : United States
Organisme : NIMH NIH HHS
ID : U01-MH116438
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116438
Pays : United States
Organisme : NIMH NIH HHS
ID : R01-MH123178
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH123178
Pays : United States
Organisme : NIMH NIH HHS
ID : R01-MH109907
Pays : United States
Références
Nat Methods. 2019 May;16(5):397-400
pubmed: 30962623
Exp Mol Med. 2018 Aug 7;50(8):96
pubmed: 30089861
Trends Neurosci. 2017 Jul;40(7):397-407
pubmed: 28578790
Dev Biol. 2010 Mar 15;339(2):250-7
pubmed: 20025863
Nature. 2015 Feb 19;518(7539):317-30
pubmed: 25693563
Genome Med. 2017 Aug 18;9(1):75
pubmed: 28821273
Nat Methods. 2017 Oct;14(10):975-978
pubmed: 28825706
Genome Biol. 2019 Nov 18;20(1):241
pubmed: 31739806
Cell. 2019 Jun 13;177(7):1888-1902.e21
pubmed: 31178118
Nat Biotechnol. 2019 Dec;37(12):1452-1457
pubmed: 31611697
Cell. 2020 Aug 6;182(3):754-769.e18
pubmed: 32610082
Mol Cell. 2018 Sep 6;71(5):858-871.e8
pubmed: 30078726
Bioinformatics. 2016 Jan 15;32(2):289-91
pubmed: 26424858
Genomics. 2015 Sep;106(3):159-164
pubmed: 26072433
Nat Genet. 2015 Feb;47(2):106-14
pubmed: 25501392
Nat Methods. 2020 Jan;17(1):11-14
pubmed: 31907462
Pediatr Res. 2019 Jan;85(2):146-154
pubmed: 30367159
Hum Mol Genet. 2015 Oct 15;24(20):5677-86
pubmed: 26188006
PLoS One. 2018 Jan 19;13(1):e0191319
pubmed: 29351346
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Nucleic Acids Res. 2007 Jan;35(Database issue):D88-92
pubmed: 17130149
Science. 2018 Dec 14;362(6420):
pubmed: 30545857
Cell. 2019 Mar 7;176(6):1502-1515.e10
pubmed: 30799036
Science. 2017 Dec 8;358(6368):1318-1323
pubmed: 29217575
Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012
pubmed: 30445434
Nat Methods. 2019 Oct;16(10):983-986
pubmed: 31501545
Nature. 2016 Oct 27;538(7626):523-527
pubmed: 27760116
Nat Genet. 2018 May;50(5):727-736
pubmed: 29700473
Science. 2020 Nov 27;370(6520):
pubmed: 33243861