Insights on the Control of Yeast Single-Cell Growth Variability by Members of the Trehalose Phosphate Synthase (TPS) Complex.
Saccharomyces cerevisiae
TPS1
TSL1
gene expression noise
phenotypic heterogeneity
single-cell analysis
stochastic gene expression
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2021
2021
Historique:
received:
17
09
2020
accepted:
06
01
2021
entrez:
15
2
2021
pubmed:
16
2
2021
medline:
16
2
2021
Statut:
epublish
Résumé
Single-cell variability of growth is a biological phenomenon that has attracted growing interest in recent years. Important progress has been made in the knowledge of the origin of cell-to-cell heterogeneity of growth, especially in microbial cells. To better understand the origins of such heterogeneity at the single-cell level, we developed a new methodological pipeline that coupled cytometry-based cell sorting with automatized microscopy and image analysis to score the growth rate of thousands of single cells. This allowed investigating the influence of the initial amount of proteins of interest on the subsequent growth of the microcolony. As a preliminary step to validate this experimental setup, we referred to previous findings in yeast where the expression level of Tsl1, a member of the Trehalose Phosphate Synthase (TPS) complex, negatively correlated with cell division rate. We unfortunately could not find any influence of the initial
Identifiants
pubmed: 33585476
doi: 10.3389/fcell.2021.607628
pmc: PMC7876269
doi:
Types de publication
Journal Article
Langues
eng
Pagination
607628Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM124446
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM126557
Pays : United States
Informations de copyright
Copyright © 2021 Arabaciyan, Saint-Antoine, Maugis-Rabusseau, François, Singh, Parrou and Capp.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
PLoS Biol. 2015 Jan 27;13(1):e1002042
pubmed: 25626086
FEMS Yeast Res. 2004 Jan;4(4-5):351-9
pubmed: 14734015
Mol Biol Cell. 2013 Jun;24(12):2045-57
pubmed: 23615444
Elife. 2019 Jan 14;8:
pubmed: 30638445
Microb Cell Fact. 2015 Jun 26;14:91
pubmed: 26112740
Nat Ecol Evol. 2017 Jan 04;1(1):16
pubmed: 28812556
FEBS Lett. 1993 Aug 23;329(1-2):51-4
pubmed: 8354408
Nat Commun. 2015 Aug 13;6:7972
pubmed: 26268986
Curr Biol. 2016 May 9;26(9):1138-47
pubmed: 27068419
Nat Biotechnol. 2004 Dec;22(12):1567-72
pubmed: 15558047
Nature. 2006 Jun 15;441(7095):840-6
pubmed: 16699522
Cell Stem Cell. 2015 Dec 3;17(6):651-662
pubmed: 26637942
FEBS J. 2005 Mar;272(6):1490-500
pubmed: 15752364
J Biol Chem. 1968 Apr 25;243(8):2003-7
pubmed: 4967174
Trends Biochem Sci. 1995 Jan;20(1):3-10
pubmed: 7878741
Microbiol Mol Biol Rev. 2016 Jul 27;80(3):765-77
pubmed: 27466281
Nature. 2013 Oct 24;502(7472):489-98
pubmed: 24153302
PLoS Genet. 2018 Nov 2;14(11):e1007744
pubmed: 30388117
Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714
pubmed: 10862876
PLoS Biol. 2012;10(5):e1001325
pubmed: 22589700
Mol Biol Evol. 2013 Dec;30(12):2568-78
pubmed: 23938868
Nature. 2014 Oct 16;514(7522):376-9
pubmed: 25186725
Appl Environ Microbiol. 2013 Sep;79(17):5197-207
pubmed: 23793638
Science. 2014 Feb 28;343(6174):1245114
pubmed: 24436182
Biochem J. 2013 Sep 1;454(2):227-37
pubmed: 23763276
Nat Rev Microbiol. 2015 Aug;13(8):497-508
pubmed: 26145732
Cell Stem Cell. 2008 May 8;2(5):437-47
pubmed: 18462694
Nat Rev Mol Cell Biol. 2011 Jan;12(1):36-47
pubmed: 21179060
FEMS Yeast Res. 2004 Sep;4(8):773-87
pubmed: 15450184
Genetics. 2017 Jul;206(3):1645-1657
pubmed: 28495957
Genetics. 2012 Sep;192(1):73-105
pubmed: 22964838
G3 (Bethesda). 2020 Sep 2;10(9):3435-3443
pubmed: 32727919
Curr Opin Microbiol. 2018 Oct;45:30-38
pubmed: 29477028