Multimilligram-scale production implementation of atropisomers of 2,2'-bis(2,2'-bithiophene-5-yl)-3,3'-bithianaphthene.
3,3′-dibenzothiophene derivative
Chiralpak IB
inherent chirality
semipreparative enantioseparation
Journal
Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
01
10
2020
revised:
14
12
2020
accepted:
14
12
2020
pubmed:
16
2
2021
medline:
16
2
2021
entrez:
15
2
2021
Statut:
ppublish
Résumé
2,2'-Bis[2-(5,2'-bithienyl)]-3,3'-bithianaphthene (1) is the progenitor of a class of C
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
146-152Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Kane-Maguire LAP, Wallace GG. Chiral conducting polymers. Chem Soc Rev. 2010;39(7):2545-2576.
Yang X, Seo S, Park C, Kim E. Electrical chiral assembly switching of soluble conjugated polymers from propylenendioxythiophene-phenylene copolymers. Macromolecules. 2014;47(20):7043-7051.
Hu D, Lu B, Zheng K, et al. Synhesis of novel chiral 1-phenylalanine grafted PEDOT derivatives with electrochemical chiral sensors for 3,4-dihydroxyphenylalanine discrimination. Int J Electrochem Sci. 2015;10:3065-3081.
Dong L, Zhang Y, Duan X, Zhu X, Sun H, Chiral XJ. PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: mechanism and model of chiral recognition. Anal Chem. 2017;89(18):9695-9702.
Langeveld-Voss BMW, Janssen RAJ, Meijer EW. On the origin of optical activity in polythiophenes. J Mol Struct. 2000;521(1-3):285-301.
Sannicolò F, Rizzo S, Benincori T, et al. An effective multipurpose building block for 3D electropolymerisations: 2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bi-1-benzothiophene. Electrochim Acta. 2010;55(27):8352-8364.
Sannicolò F, Arnaboldi S, Benincori T, et al. Potential-driven chirality manifestations and impressive enantioselectivity by inherently chiral electroactive organic films. Angew Chem Int Ed. 2014;53(10):2623-2627.
Sannicolò F, Arnaboldi S, Benincori T, et al. Inherently chiral macrocyclic oligothiophenes. Easily accessible electrosensitive cavities with outstanding enantioselection performances. Chem A Eur J. 2014;20(47):15298-15302.
Arnaboldi S, Benincori T, Cirilli R, et al. Inherently chiral electrodes: the tool for chiral voltammetry. Chem Sci. 2015;6(3):1706-1711.
Grecchi S, Arnaboldi S, Korb M, et al. Widening the scope of “inherently chiral” electrodes: enantiodiscrimination of chiral electroactive probes with planar stereogenicity. ChemElectroChem. 2020;7(16):3429-3438.
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Absolute chiral recognition with hybrid wireless electrochemical actuators. Anal Chem. 2020;92(14):10042-10047.
Pierini M, Carradori S, Menta S, Secci D, Cirilli R. 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1H)-pyrazole: a fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. PartII. Solvophobic effects in enantiorecognition process. J Chromatogr a. 2017;1499:140-148.
Andersson S, Allenmark SG. Preparative chiral chromatographic resolution of enantiomers in drug discovery. J Biochem Biophys Methods. 2002;54(1-3):11-23.
Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A. 2001;906(1-2):379-397.
Ghirga F, Quaglio D, Ghirga P, et al. Occurrence of enantioselectivity in nature: the case of (S)-norcoclaurine. Chirality. 2016;28(3):169-180.
Zhang T, Schaeffer M, Franco P. Optimization of the chiral separation of a Ca-sensitizing drug on an immobilized polysaccharide-based chiral stationary phase: case study with a preparative perspective. J Chromatogr A. 2005;1083(1-2):96-101.
Cirilli R, Orlando V, Ferretti R, Turchetto L, Silvestri R, De G. La Torre F direct HPLC enantioseparation of chiral aptazepine derivatives on coated and immobilized polysaccharide-based chiral stationary phases. Chirality. 2006;18(8):621-632.
Shen J, Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev. 2016;116(3):1094-1138.
Lammerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A. 2010;1217(6):814-856.
Asnin LD, Stepanova MV. Van't Hoff analysis in chiral chromatography. J Sep Sci. 2018;41(6):1319-1337.
Panella C, Ferretti R, Casulli A, Cirilli R. Temperature and eluent composition effects on enantiomer separation of carvedilol by high-performance liquid chromatography on immobilized amylose-based chiral stationary phases. J Pharm Anal. 2019;9(5):324-331.
Gasparrini F, Marini F, Misiti D, Pierini M, Villani C. Temperature dependent elution order of enantiomers on a two-armed receptor HPLC chiral stationary phase. Enantiomer. 1999;4:325-332.
Schurig V. Gas-chromatographic separation of enantiomers on optically-active metal-complex free stationary phases. Angew Chem Int Ed Engl. 1984;23(10):747-765.
Pirkle WH. Unusual effect of temperature on the retention of enantiomers on a chiral column. J Chromatogr. 1991;558(1):1-6.
Díaz Merino ME, Lancioni C, Padró JM, Castells CB. Study of enantioseparation of β-blockers using amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions. J Chromatogr a. 2020;1634:461685.