Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect.
aestivation
catabolism
dehydration
double barrier concept
hypertension
transepidermal water loss
Journal
Acta physiologica (Oxford, England)
ISSN: 1748-1716
Titre abrégé: Acta Physiol (Oxf)
Pays: England
ID NLM: 101262545
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
11
02
2021
received:
19
12
2020
accepted:
11
02
2021
pubmed:
17
2
2021
medline:
8
7
2021
entrez:
16
2
2021
Statut:
ppublish
Résumé
Recent evidence suggests that arterial hypertension could be alternatively explained as a physiological adaptation response to water shortage, termed aestivation, which relies on complex multi-organ metabolic adjustments to prevent dehydration. Here, we tested the hypothesis that chronic water loss across diseased skin leads to similar adaptive water conservation responses as observed in experimental renal failure or high salt diet. We studied mice with keratinocyte-specific overexpression of IL-17A which develop severe psoriasis-like skin disease. We measured transepidermal water loss and solute and water excretion in the urine. We quantified glomerular filtration rate (GFR) by intravital microscopy, and energy and nitrogen pathways by metabolomics. We measured skin blood flow and transepidermal water loss (TEWL) in conjunction with renal resistive indices and arterial blood pressure. Psoriatic animals lost large amounts of water across their defective cutaneous epithelial barrier. Metabolic adaptive water conservation included mobilization of nitrogen and energy from muscle to increase organic osmolyte production, solute-driven maximal anti-diuresis at normal GFR, increased metanephrine and angiotensin 2 levels, and cutaneous vasoconstriction to limit TEWL. Heat exposure led to cutaneous vasodilation and blood pressure normalization without parallel changes in renal resistive index, albeit at the expense of further increased TEWL. Severe cutaneous water loss predisposes psoriatic mice to lethal dehydration. In response to this dehydration stress, the mice activate aestivation-like water conservation motifs to maintain their body hydration status. The circulatory water conservation response explains their arterial hypertension. The nitrogen-dependency of the metabolic water conservation response explains their catabolic muscle wasting.
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13628Subventions
Organisme : NIH HHS
ID : RO1HL118579
Pays : United States
Informations de copyright
© 2021 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Références
Borst JG, Borst-De GA. Hypertension explained by Starling's theory of circulatory homoeostasis. Lancet. 1963;1(7283):677-682.
Coleman TG, Guyton AC. Hypertension caused by salt loading in the dog. 3. Onset transients of cardiac output and other circulatory variables. Circ Res. 1969;25(2):153-160.
Freis ED. Salt, volume and the prevention of hypertension. Circulation. 1976;53(4):589-595.
Kovarik J, Morisawa N, Wild J, et al . Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol (Oxf). 2021:e13629. https://doi.org/10.1111/apha.13629
Burggren WW, Vitalis TZ. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian. J Exp Biol. 2005;208(Pt 1):105-112.
Hembree DI. Aestivation in the fossil record: evidence from ichnology. Prog Mol Subcell Biol. 2010;49:245-262.
Storey KB, Storey JM. Metabolic regulation and gene expression during aestivation. Prog Mol Subcell Biol. 2010;49:25-45.
Storey KB, Storey JM. Aestivation: signaling and hypometabolism. J Exp Biol. 2012;215(Pt 9):1425-1433.
Delaney RG, Lahiri S, Fishman AP. Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol. 1974;61(1):111-128.
Szidon JP, Lahiri S, Lev M, Fishman AP. Heart and circulation of the African lungfish. Circ Res. 1969;25(1):23-38.
Hanel KH, Cornelissen C, Luscher B, Baron JM. Cytokines and the skin barrier. Int J Mol Sci. 2013;14(4):6720-6745.
Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098.
Ramos-e-Silva M, Jacques C. Epidermal barrier function and systemic diseases. Clin Dermatol. 2012;30(3):277-279.
Croxford AL, Karbach S, Kurschus FC, et al. IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J Invest Dermatol. 2014;134(3):728-735.
Goh CL, Khoo L. Laser Doppler perfusion imaging (LDPI) and transepidermal water loss (TEWL) values in psoriatic lesions treated with narrow band UVB phototherapy. Dermal vascularity may be useful indicator of psoriatic activity. Ann Acad Med Singapore. 2004;33(1):75-79.
Navas CA, Carvalho JE. Aestivation: Molecular and physiological aspects. Heidelberg: Springer Verlag; 2010.
Kriz W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol. 1981;241(1):R3-R16.
Sands JM. Critical role of urea in the urine-concentrating mechanism. J Am Soc Nephrol. 2007;18(3):670-671.
Nakayama Y, Peng T, Sands JM, Bagnasco SM. The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression. J Biol Chem. 2000;275(49):38275-38280.
Hasler U, Jeon US, Kim JA, et al. Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol. 2006;17(6):1521-1531.
Ho SN. Intracellular water homeostasis and the mammalian cellular osmotic stress response. J Cell Physiol. 2006;206(1):9-15.
Kim YM, Kim WY, Lee HW, et al. Urea and NaCl regulate UT-A1 urea transporter in opposing directions via TonEBP pathway during osmotic diuresis. Am J Physiol Renal Physiol. 2009;296(1):F67-F77.
Jung JY, Kwon HM, Kim J. Regulation of urea transporters by tonicity-responsive enhancer binding protein. Electrolyte Blood Press. 2007;5(1):28-33.
Sebastian R, Chau E, Fillmore P, et al. Epidermal aquaporin-3 is increased in the cutaneous burn wound. Burns. 2015;41(4):843-847.
Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545-552.
Wiig H, Schroder A, Neuhofer W, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123(7):2803-2815.
Karbach S, Croxford AL, Oelze M, et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol. 2014;34(12):2658-2668.
Forslind B. The skin barrier: analysis of physiologically important elements and trace elements. Acta Derm Venereol Suppl (Stockh). 2000;208:46-52.
Wei X, Roomans GM, Forslind B. Elemental distribution in guinea-pig skin as revealed by X-ray microanalysis in the scanning transmission microscope. J Invest Dermatol. 1982;79(3):167-169.
Forslind B, Roomans GM, Carlsson LE, Malmqvist KG, Akselsson KR. Elemental analysis on freeze-dried sections of human skin: studies by electron microprobe and particle induced X-ray emission analysis. Scan Electron Microsc. 1984;Pt 2(2):755-759.
von Zglinicki T, Lindberg M, Roomans GM, Forslind B. Water and ion distribution profiles in human skin. Acta Derm Venereol. 1993;73(5):340-343.
Forslind B, Lindberg M, Malmqvist KG, Pallon J, Roomans GM, Werner-Linde Y. Human skin physiology studied by particle probe microanalysis. Scanning Microsc. 1995;9(4):1011-1025.discussion 1025-1016.
Forslind B, Engstrom S, Engblom J, Norlen L. A novel approach to the understanding of human skin barrier function. J Dermatol Sci. 1997;14(2):115-125.
Forslind B, Lindberg M, Roomans GM, Pallon J, Werner-Linde Y. Aspects on the physiology of human skin: studies using particle probe analysis. Microsc Res Tech. 1997;38(4):373-386.
Kitada K, Daub S, Zhang Y, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest. 2017;127(5):1944-1959.
Felig P. The glucose-alanine cycle. Metabolism. 1973;22(2):179-207.
Felig P, Owen OE, Wahren J, Cahill GF Jr. Amino acid metabolism during prolonged starvation. J Clin Invest. 1969;48(3):584-594.
Arendshorst WJ, Gottschalk CW. Glomerular ultrafiltration dynamics: historical perspective. Am J Physiol. 1985;248(2 Pt 2):F163-174.
Buraczewska I, Berne B, Lindberg M, Torma H, Loden M. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br J Dermatol. 2007;156(3):492-498.
Smith CJ, Johnson JM. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Auton Neurosci. 2016;196:25-36.
Yosipovitch G, Sackett-Lundeen L, Goon A, Yiong Huak C, Leok Goh C, Haus E. Circadian and ultradian (12 h) variations of skin blood flow and barrier function in non-irritated and irritated skin-effect of topical corticosteroids. J Invest Dermatol. 2004;122(3):824-829.
Schuler R, Efentakis P, Wild J, et al. T cell-derived IL-17A induces vascular dysfunction via perivascular fibrosis formation and dysregulation of (.)NO/cGMP signaling. Oxid Med Cell Longev. 2019;2019:6721531.
Johnson JM, Minson CT, Kellogg DL Jr. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33-89.
Goddard GM, Ravikumar A, Levine AC. Adrenal mild hypercortisolism. Endocrinol Metab Clin North Am. 2015;44(2):371-379.
Hafner M, Wenk J, Nenci A, et al. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis. 2004;38(4):176-181.
Cheung MC, Spalding PB, Gutierrez JC, et al. Body surface area prediction in normal, hypermuscular, and obese mice. J Surg Res. 2009;153(2):326-331.
Kossmann S, Lagrange J, Jackel S, et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med. 2017;9(375):eaah4923.
Viazzi F, Leoncini G, Derchi LE, Pontremoli R. Ultrasound Doppler renal resistive index: a useful tool for the management of the hypertensive patient. J Hypertens. 2014;32(1):149-153.
Xu H, Ma Z, Lu S, et al. Renal Resistive Index as a Novel Indicator for Renal Complications in High-Fat Diet-Fed Mice. Kidney Blood Press Res. 2017;42(6):1128-1140.
Kitamura H, Nakano D, Sawanobori Y, et al. Guanylyl cyclase A in both renal proximal tubular and vascular endothelial cells protects the kidney against acute injury in rodent experimental endotoxemia models. Anesthesiology. 2018;129(2):296-310.
Titze J, Bauer K, Schafflhuber M, et al. Internal sodium balance in DOCA-salt rats: a body composition study. Am J Physiol Renal Physiol. 2005;289(4):F793-802.
Titze J, Lang R, Ilies C, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003;285(6):F1108-F1117.
Bouley R, Palomino Z, Tang SS, et al. Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am J Physiol Renal Physiol. 2009;297(6):F1575-F1586.
Li C, Wang W, Rivard CJ, Lanaspa MA, Summer S, Schrier RW. Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am J Physiol Renal Physiol. 2011;300(5):F1255-F1261.